
1

Parallel programming and

thread safe data structures

Audrius Pakalniškis

Vilnius University

 Lithuania

2

Tasks

• Goal: testing the potential of transactional

memory

– Getting acquainted with thread based

parallelism, using TBB as abstraction.

– Development of lock based parallel safe data

structures.

– Development of software transactional model

based parallel-safe data structures.

– Performance comparison.

3

Problem

Serial result: x=12;

Parallel result: x=11;

4

Mutex

• Mutex (mutual exclusion) lock some part

of code; only one thread can access it.

mutex m;

int i=1;

void f(){

 m.lock();

 ++i;

 m.unlock;

}

5

Transactional Memory (TM) (1)

6

Transaction Memory (TM) (2)

• GCC-4.7 introduced a Software

Transactional Memory (STM). It is still

experimental and not yet optimized.

• Intel announced hardware support for TM

(HTM) in Haswell microarchitecture.

Haswell - future Intel microarchitecture, expected around 2013, based on

a 22 nm process.

7

TM example (1)

int a=0;

__attribute__((transaction_safe))

void f()

{

 __transaction_atomic {

 ++a;

 }

}

8

Transaction types

• __transaction_atomic

– Can’t communicate with other threads and

transaction.

• __transaction_relaxed

– Can communicate with other threads but not

with other transaction.

9

Function attributes

• transaction_safe

• transaction_unsafe

• transaction_callable

10

TM example (2)

void f(int* shared){

 __transaction_atomic {

 int temp=*shared;

 if (g(temp)){

 ++temp;

 *shared=temp;

 }

 }

}

mutex m;

void f(int* shared){

 m.lock();

 int temp=*shared;

 if (g(temp)){

 ++temp;

 *shared=temp;

 }

 m.unlock();

}

11

TM example (3)

void f(int* shared){

 __transaction_atomic {

 int temp=*shared;

 if (g(temp)){

 ++temp;

 *shared=temp;

 }

 }

}

mutex m;

void f(int* shared){

 bool success=false;

 while (success!=true){

 int temp=*shared;

 int oldShared=temp;

 if (g(temp)){

 ++temp;

 m.lock();

 if(oldShared==*shared){

 *shared=temp;

 success=true;

 }

 m.unlock

 } else {

 success=true;

 }

 }

}

Using STM in gcc

 Fake TM in C++ code

12

What is inside? (1)

void f()

{

 __transaction_atomic {

 ++a;

 }

}

push %rbp

mov %rsp,%rbp

mov $0x29,%edi

mov $0x0,%eax

callq 400fd8 <_ITM_beginTransaction@plt>

mov $0x74c2ec,%edi

callq 4010b8 <_ITM_RU4@plt>

add $0x1,%eax

mov %eax,%esi

mov $0x74c2ec,%edi

callq 400fe8 <_ITM_WU4@plt>

callq 400f48 <_ITM_commitTransaction@plt>

pop %rbp

retq

13

What is inside? (2)
• _ITM_beginTransaction() – save the

machine state, initialize transaction

data and do other preparation steps.

• _ITM_RU4() – take variable address,

checks that memory is not locked or

recent (value is taken from global

table) and read value.

• _ITM_WU4() – take variable address

and value. Marking address location

as recent, and keep value.

• _ITM_commitTransaction() – tries to

commit, and if it fails restart

transaction

push %rbp

mov %rsp,%rbp

mov $0x29,%edi

mov $0x0,%eax

callq 400fd8 <_ITM_beginTransaction@plt>

mov $0x74c2ec,%edi

callq 4010b8 <_ITM_RU4@plt>

add $0x1,%eax

mov %eax,%esi

mov $0x74c2ec,%edi

callq 400fe8 <_ITM_WU4@plt>

callq 400f48 <_ITM_commitTransaction@plt>

pop %rbp

retq

14

Performance

TM performance depends on:

• Collisions count

• Chance to not change memory

15

Tests

• Comparison TM based and lock based

data structures

• TM based Queue implementation and Intel

TBB concurrent_queue.

16

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

TM

Lock

Test of TM based and lock based data

structure

Execution

Time (s)

Chance to

change

memory

17

Queue (1)

TM faster

TBB faster

Pushing and popping 8B data

18

Queue (2)

TM faster

TBB faster

Pushing and popping 2,5KB data

19

Queue (3)

TM faster

TBB faster

Pushing and popping 5KB data

20

Queue (4)

TM faster

TBB faster

Pushing and popping 10KB data

21

Conclusion

• Experimental STM in GCC-4.7 works and
gives correct results.

• Transactional memory allows to make
parallel safe programming easier.

• Sometimes performance is not as good as
expected, so we need to wait for
optimizations.

• We expect better performance once there
is hardware support.

