
1 

Parallel programming and 

thread safe data structures 

Audrius Pakalniškis 

Vilnius University 

 Lithuania 



2 

Tasks 

• Goal: testing the potential of transactional 

memory 

– Getting acquainted with thread based 

parallelism, using TBB as abstraction. 

– Development of lock based parallel safe data 

structures. 

– Development of software transactional model 

based parallel-safe data structures. 

– Performance comparison. 
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Problem 

Serial result: x=12; 

Parallel result: x=11; 
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Mutex 

• Mutex (mutual exclusion) lock some part 

of code; only one thread can access it.  

mutex m; 

int i=1; 

void f(){ 

      m.lock(); 

      ++i; 

      m.unlock; 

} 
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Transactional Memory (TM) (1) 
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Transaction Memory (TM) (2) 

• GCC-4.7 introduced a Software 

Transactional Memory (STM). It is still 

experimental and not yet optimized.   

• Intel announced hardware support for TM 

(HTM) in Haswell microarchitecture.  

Haswell - future Intel microarchitecture, expected around 2013, based on 

a 22 nm process.  
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TM example (1) 

int a=0; 

__attribute__((transaction_safe)) 

void f() 

{ 

    __transaction_atomic { 

        ++a; 

    } 

} 
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Transaction types 

• __transaction_atomic 

– Can’t communicate with other threads and 

transaction. 

• __transaction_relaxed 

– Can communicate with other threads but not 

with other transaction. 
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Function attributes  

• transaction_safe  

• transaction_unsafe  

• transaction_callable 
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TM example (2) 

 

void f(int* shared){ 

        __transaction_atomic { 

                int temp=*shared; 

                if (g(temp)){ 

                      ++temp; 

                      *shared=temp; 

   } 

        } 

}  

 

mutex m; 

void f(int* shared){ 

        m.lock(); 

         int temp=*shared; 

  if (g(temp)){ 

                      ++temp;                

        *shared=temp; 

 } 

        m.unlock(); 

} 



11 

TM example (3) 

 

void f(int* shared){ 

        __transaction_atomic { 

                int temp=*shared; 

                if (g(temp)){ 

                      ++temp; 

                      *shared=temp; 

   } 

        } 

}  

 

mutex m; 

void f(int* shared){ 

        bool success=false; 

        while (success!=true){ 

                int temp=*shared; 

                int oldShared=temp; 

                if (g(temp)){ 

                      ++temp;  

         m.lock(); 

                       if(oldShared==*shared){ 

                            *shared=temp; 

                            success=true; 

                       } 

                      m.unlock 

   } else { 

        success=true; 

   }  

        } 

}  

Using STM in gcc 

 Fake TM in C++ code 
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What is inside? (1) 

void f() 

{ 

    __transaction_atomic { 

        ++a; 

    } 

} 

push   %rbp 

mov    %rsp,%rbp 

mov    $0x29,%edi 

mov    $0x0,%eax 

callq  400fd8 <_ITM_beginTransaction@plt> 

mov    $0x74c2ec,%edi 

callq  4010b8 <_ITM_RU4@plt> 

add    $0x1,%eax 

mov    %eax,%esi 

mov    $0x74c2ec,%edi 

callq  400fe8 <_ITM_WU4@plt> 

callq  400f48 <_ITM_commitTransaction@plt> 

pop    %rbp 

retq 
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What is inside? (2) 
• _ITM_beginTransaction() – save the 

machine state, initialize transaction 

data and do other preparation steps. 

 

• _ITM_RU4() – take variable address, 

checks that memory is not locked or 

recent (value is taken from global 

table) and read value. 
 

• _ITM_WU4() – take variable address 

and value. Marking address location 

as recent, and keep value.  

 

• _ITM_commitTransaction() – tries to 

commit, and if it fails restart 

transaction 

 

push   %rbp 

mov    %rsp,%rbp 

mov    $0x29,%edi 

mov    $0x0,%eax 

callq  400fd8 <_ITM_beginTransaction@plt> 

mov    $0x74c2ec,%edi 

callq  4010b8 <_ITM_RU4@plt> 

add    $0x1,%eax 

mov    %eax,%esi 

mov    $0x74c2ec,%edi 

callq  400fe8 <_ITM_WU4@plt> 

callq  400f48 <_ITM_commitTransaction@plt> 

pop    %rbp 

retq 
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Performance 

TM performance depends on: 

• Collisions count 

• Chance to not change memory 
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Tests  

• Comparison TM based and lock based 

data structures 

• TM based Queue implementation and Intel 

TBB concurrent_queue.  
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Queue (1) 

TM faster 

TBB faster 

Pushing and popping 8B data 
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Queue (2) 

TM faster 

TBB faster 

Pushing and popping 2,5KB data 



19 

Queue (3) 

TM faster 

TBB faster 

Pushing and popping 5KB data 
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Queue (4) 

TM faster 

TBB faster 

Pushing and popping 10KB data 
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Conclusion  

• Experimental STM in GCC-4.7 works and 
gives correct results. 

• Transactional memory allows to make 
parallel safe programming easier. 

• Sometimes performance is not as good as 
expected, so we need to wait for 
optimizations. 

• We expect better performance once there 
is hardware support.  


