Parallel programming and
thread safe data structures

Audrius Pakalniskis
Vilnius University
Lithuania

Tasks

» Goal: testing the potential of transactional
memory

— Getting acquainted with thread based
parallelism, using TBB as abstraction.

— Development of lock based parallel safe data
structures.

— Development of software transactional model
pased parallel-safe data structures.

— Performance comparison.

Problem

memory

Serial result: x=12:
writing Parallel result: x=11;

reading

Mutex

* Mutex (mutual exclusion) lock some part
of code; only one thread can access Iit.

=110
mutex m;
Int 1=1; CPU 0 CPU 1
void f(){
m.lock(); try lock;
. lock; try lock;
T+ wait; time
m.unlock; G
} unlock; try lock;
lock
+HX;
unlock;

Transactional Memory (TM

commit
successful

¥=12

x=110
CPUO CPU 1
transaction{
++X;
commit{
¥ was 10
[now 10 trasaction{ commit
Rl el +x; unsuccessful
! commit{
: X was 10
X ¥ now 11
repeat;
+HX; commit
commit] successful
¥ was 11 -
X now 11
|updatex;
h
h

(1)

Transaction Memory (TM) (2)

 GCC-4.7 Introduced a Software
Transactional Memory (STM). It is still
experimental and not yet optimized.

* Intel announced hardware support for TM
(HTM) in Haswell microarchitecture.

Core
Conroe — Wolfdals Nehalem Sandy Bridge Haswell Skylake
Eentzfield — Yorkfield ehalern —— Westmere Sandy Endge —-I 7 Bridze —Hazwell —-E cadw]l Shlal-.e —s Skymont
65 mm 45 nm 32 mm 1l nm 10 mm
Atom
Silverthome ——Lincroft |
| Diamondville. —Pineview — Cedaniew

Haswell - future Intel microarchitecture, expected around 2013, based on
a 22 nm process.

TM example (1)

Int a=0;
__attribute _ ((transaction_safe))
void f()
{
__transaction_atomic {
++a;
}

}

Transaction types

« transaction_atomic

— Can’t communicate with other threads and
transaction.

« transaction_relaxed

— Can communicate with other threads but not
with other transaction.

Function attributes

* transaction_ safe
* transaction_unsafe
 transaction_callable

TM example (2)

mutex m;
void f(int* shared){
m.lock();
Int temp=*shared,;
it (g(temp){
++temp;
*shared=temp;
}
m.unlock();
}

void f(int* shared){
___transaction_atomic {
int temp=*shared,;
It (g(temp){
++temp;
*shared=temp;

}

10

TM example (3)

Fake TM in C++ code

mutex m;
void f(int* shared){
bool success=false;

Using STM in gcc while (success!=true){
oy int temp=*shared,;
void f(int* shared){ N - _
__transaction_atomic { 'Pt oldShared=temp;
int temp=*shared; | (gitJertrg&)){.
f (g(temp)){ mlock:
++temp; L .
*shared=temp; If(ol‘dsigﬁerﬁgt_e_mfahamd){
) } success=true;
}
} m.unlock
} else {
success=true;
}
J 11

What is inside? (1)

push %rbp
mov %rsp,%rbp
mov $0x29,%edi
void f() mov $0x0,%eax
{ callg 400fd8 < _ITM _beginTransaction@plt>
__transaction_atomic { mov $0x74c2ec,%edi
++a: callg 4010b8 < ITM_RU4@plt>
} add $0x1,%eax
} mov %eax,%esi
mov $0x74c2ec,%edi
callg 400fe8 < ITM_WU4@plt>
callg 400f48 < ITM_commitTransaction@plt>
pop %rbp
retq

12

What Is inside? (2)

push %rbp

mov %rsp,%rbp

mov $0x29,%edi

mov $0x0,%eax

callg 400fd8 <_ITM_beginTransaction@plt>
mov $0x74c2ec,%edi

callg 4010b8 < ITM_RU4@plt>

add $0x1,%eax

mov %eax,%esi

mov $0x74c2ec,%edi

callg 400fe8 < ITM_WU4@plt>

callg 400f48 <_ITM_commitTransaction@plt>
pop %rbp

retq

_ITM_beginTransaction() — save the
machine state, initialize transaction
data and do other preparation steps.

_ITM_RU4() — take variable address,
checks that memory is not locked or
recent (value is taken from global
table) and read value.

_ITM_WU4() — take variable address
and value. Marking address location
as recent, and keep value.

_ITM_commitTransaction() — tries to
commit, and if it fails restart
transaction 13

Performance

TM performance depends on:
» Collisions count
« Chance to not change memory

14

Tests

 Comparison TM based and lock based
data structures

 TM based Queue implementation and Intel
TBB concurrent_queue.

15

Test of TM based and lock based data
structure

Execution
Time ()
1,8 -

1,6 — /

14 4

1,2 A

1 —T™
0,8 1 — Lock

0,6
0,4
0,2

0 . ! . : : : , , , - Chance to

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Change
memory

16

Queue (1)

Pushing and popping 8B data

number of

popping threads

[SRS R S L s R R v]

-261.36%
-240.40%
-229.74%
-299.59%
-209.22%
-244 18%
-266.21%
-246.13%

1

488.39% 562.00%
-519.14% 563.18%
-522 36% -630.09%
579 84% 641.36%
570 46% 661.55%
592 57% 668.33%
504.20% 735.40%
527 78% T61.41%
2 3
5% TM faster
5% TBB faster

-573.47%
-623.56%
-621.91%
-660.47%
-700.04%
-704_29%
-780.55%
-650.39%

4

-652.33%
-656.14%
-682.20%
-129.34%
-124.81%
-758.90%
-833.89%
-922.82%

5

-660.65%
-760.92%
-749.78%
-811.24%
-TAT 37%
-800.64%
-750.87%
-983.47%

6

-716.05%
-802.54%
-813.48%
-193.65%
-841.53%
-814_80%
-897_26%
-973.48%

7

-198.02%
-T73.59%
-832.11%
-802.12%
-199.52%
-839.49%
-805.65%
-928.85%

number of
pushing threads

17

Queue (2)

Pushing and popping 2,5KB data

number of
popping threads

8 -34.02% -30.13% -39.38%]
7 -38.51% -3417% -39.80% 138% @ 37.88%
6 -26.09% -24 68% -32.84% 458% 40.99%
5 18.41% -30.70% 4573% | 1379% = 4654% 2637%
4 B056% -3658% -28.06% 2869% 3340% 2019% 1437%
3 -67.92% -37.79% -1042% 2813% 11.18% 11.98% | 561% | = 233%
2 T188% -7299% 4059% ___
1 -69.48% 60.09% 4.07% 2.82% -1.93% -10.89%
1 5 3 i E 5 number of

pushing threads

- TM faster

-5% TBB faster

18

Queue (3)

Pushing and popping 5KB data

number of
popping threads
g
7
B
5
4
3
2 -30.30% C 0 14.00% - 6.00%
1 -10. 59% ______ number of

1 B pushing threads

- TM faster

-5% TBB faster

19

Queue (4)

Pushing and popping 10KB data

number of
popping threads

number of
pushing threads

EEENISITMERISIEIENEY

- TM faster

-5% TBB faster

20

Conclusion

Experimental STM in GCC-4.7 works and
gives correct results.

Transactional memory allows to make
parallel safe programming easier.

Sometimes performance Is not as good as
expected, so we need to wait for
optimizations.

We expect better performance once there
IS hardware support.

21

