

Status and Physics Opportunities of STAR Heavy Flavor Tracker and Muon Telescope Detector Upgrades

Qiu Hao (LBNL) for the STAR Collaboration

Outline

- STAR detector overview
- New physics direction for STAR heavy ion program
- Heavy Flavor Tracker and Muon Telescope Detector
 - Physics motivation
 - Design
 - Status and performance
- RHIC run plan
 - Summary

STAR STAR Detector Overview

- Heavy flavor
 - $m_{b,c} \gg T_C, \Lambda_{QCD}, m_{u,d,s}$
 - Early produce
 - Conserve in total number
 - Less influenced
 - Good probe to QGP
 - Thermal di-lepton
 - QGP signal

BIRMING

Probing the temperature of the medium

Qiu Hao (LBNL)

HFT

MTD

Open heavy flavor ——>

Heavy quarkonium -

Outline

- STAR detector overview
- New physics direction for STAR heavy ion program
- Heavy Flavor Tracker and Muon Telescope Detector
 - Physics motivation
 - Design
 - Status and performance
- RHIC run plan
- Summary

HFT Physics Motivation

• Total charm yield

STAR 🛧

- → base line for charmonium suppression & coalescence
- R_{CP} , R_{AA} of charm and bottom \implies energy loss in QGP
- Charm (D⁰) flow

 Λ_c^+/D^0

BIRMINGHAN

- \rightarrow onorgy loss in OCP
- thermalization?
- $c\overline{c}$ ($D^{0}\overline{D^{0}}$) angular correlation interaction with the medium
 - ➡ test coalescence model
 - Qiu Hao (LBNL)

Charm Yield, R_{CP} and R_{AA}

• Total charm yield

 $\mathsf{R}_{\mathsf{CP}}, \mathsf{R}_{\mathsf{AA}}$

BIRMINGHAM

base line for charmonium suppression & coalescence energy loss mechanism, QCD in dense medium

Charm Yield, R_{CP} and R_{AA}

STAR 🛧

BIRMINGHAN

STAR * Charm Yield, R_{CP} and R_{AA}

• Much better precision with HFT than current STAR measurement

BIRMING

 Low radiation length enable reconstruction of D⁰ with p_T starting from 0, enabling charm total cross section measurement.

STAR * Charm Yield, R_{CP} and R_{AA}

• Probe possible different medium property with different collision energy.

BIRMING

 Low radiation length enable reconstruction of D⁰ with p_T starting from 0, enabling charm total cross section measurement.

BIRMING

Charm Flow

- $D^0 v_2$ is a more direct measurement of charm flow than non-photonic electron v_2 .
- With HFT STAR is able to measure $D^0 v_2$ at low p_T region, which is sensitive to charm flow.

BIRMING

Charm Flow

 Measurements at both LHC and RHIC will explore the change of media properties with energy.

J/ψ from B meson

STAR 🛧

HFT Design

Sub detector	r (cm)	Sensitive units	σ _{R-φ} (μm)	σ _z (μm)	X/X ₀ (%)	
Silicon Strip Detector	22	2 side strips with 95 μm pitch	20	740	1	
Intermediate Silicon Tracker	14	600 µm x 0.6 cm strips	170	1800	<1.5	
PIXEL	2.5/8	18 µm pixel pitch	12	12	0.4/layer	

HFT Status

- Engineering run for PXL prototype (3 out of 10 sectors) finished
 - installed on May 8, 2013
 - within 12 hours
 - first PXL data in daq file on May 10
 - 78 M events taken with PXL
- full system to be installed in 2014

PXL prototype half

PXL Performance

 2D correlation between measured pxl hit and TPC track projection on a sensor

Double difference of hit and track projection positions between 2 overlapping sensors Single sensor resolution = $20 / \sqrt{2} = 14$ microns ~ 12 microns resolution of designed goal

Outline

- STAR detector overview
- New physics direction for STAR heavy ion program
- Heavy Flavor Tracker and Muon Telescope Detector
 - Physics motivation
 - Design
 - Status and performance
- RHIC run plan
- Summary

- di-muon pairs from
 - QGP thermal radiation
 - quarkonia
 - light vector mesons
 - Drell-Yan production
- advantages over electrons:
 - no γ conversion

- much less Dalitz decay contribution
- less affected by radiative losses in the detector materials
- trigger capability in Au+Au

- single muons from
 - heavy flavor hadrons

Different Y states

enabling separating different Y states.

Qiu Hao (LBNL)

BIRMINGHAM

Different Y states

$q \overline{q}$	T/T_c	S. Digal, P. Petreczky, and H. Satz, <i>Phys Rev. D</i> 64,094015 (2001)	
$Y(1S) \chi_b(1P) Y(2S) \chi_b(2P) Y(3S)$	2.31 1.13 1.10 0.83 0.75	 Sequential suppression of different Y states can be used as a QGF thermometer Di-muon channel is less affected by bremsstrahlung energy losses, 	
2013		enabling separating different Y states. Qiu Hao (LBNL) 20	C

e-µ Correlation

$J/\psi R_{AA}$ and Flow

µ⁺µ⁻ channel

OBIRMINGHAN

Trigger capability for low $p_T J/\psi$

lower background

Qiu Hao (LBNL)

- Multi-gap Resistive Plate Chamber (MRPC):
 - gas detector, avalanche mode
 - use the magnet iron bars as absorber and leave the gaps in-between uncovered
- Acceptance: 45% at $|\eta|$ <0.5
- 118 modules, 1416 readout strips, 2832 readout channels
- Long-MRPC detector technology
- electronics same as used in STAR-TOF

Qiu Hao (LBNL)

MTD Design

BIRMINGHAM

3

20

MTD Status

Proposed	Actual
10% installation for 2012	10% installation for 2012
43% for 2013	63% for 2013
80% for Run 14	100% for 2014
Finish 2014	

STAR 🛧

BIRMINGHAN

STAR ☆ J/ψ from Di-muon Trigger

- J/ ψ from Di-muon Trigger with only 7 M events, out of 120 M in total from Run 13.
- without time calibration, which will further suppress background

BIRMING

BIRMINGHAM

RHIC Run Plan

Run	Energy	Time	System	Goal	
14 ⁽¹⁾	√s _{NN} =200GeV	14-week	Au+Au	HFT & MTD heavy flavor measurements, $\mathcal{L}=10 \text{ nb}^{-1}$, 1000M M.B.	
	√s _{NN} =15GeV	3-week	Au+Au	 Collect 150M M.B. events for CP search Fixed-target data taking⁽³⁾ 	
15 ⁽²⁾	√s _{NN} =200GeV	5-week	p+Au	Study saturation physics, pA-ridge and heavy ion reference, \mathcal{L} =300 nb ⁻¹	
	√s=200GeV	12-week	1) p+p	 Heavy ion reference data <i>L</i>=90 pb⁻¹, 500M M.B. 	
			2) transverse 6 weeks	 2) Study transversity, Sivers effects L=40 pb⁻¹, 60% pol. 	
			 longitudinal weeks 	3) Study $\Delta g(x)$ $\mathcal{L}=50 \text{ pb}^{-1}$, 60% pol.	

- STAR Beam User Request, endorsed by RHIC PAC.
- Focus on 200 GeV AA, pA, and pp collisions for heavy ion programs with new upgrades.

RHIC Run Plan

Summary

- STAR is conducting two major upgrades for heavy ion program:
 - HFT for heavy flavor measurements
 - MTD for muon detection
- These upgrades will enable or enhance a rich set of physics programs:
 - open and closed heavy flavor measurements, a clear probe to the QGP phase
 - thermal radiation, QGP thermometer
- The combination of HFT and MTD, together with the existing mid-rapidity subsystems, will make STAR the best suited detector to carry out the mission of studying the hot QCD matter properties.
- Construction of both detectors are going well
 - technical run for PXL prototype just finished successfully
 - 63 % of MTD installed, with desirable performance
- Both detectors will be finished for Run 14.
- New physics results with them will greatly enhance our understanding of QGP created at RHIC.

Thank you

Qiu Hao (LBNL)