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VERY NICE, SHOULD BE PUSHED FORWARD. 
 

HOWEVER,…… 



When a theorist cooks his 
model,.. 



Sometimes his model may be 
“licked”…. 



Sometimes his model may be 
“licked”…. 

Just kidding..,   They are ALL licked… 



RELATIVISTIC HYDRODYNAMICS AS COVARIANT 
LOCAL CLASSICAL FIELD THEORY 

 

 Local Thermal Equilibrium is sometimes considered as 
a necessary condition 

 Not necessarily ….  even Conflicting, if strictly local. 
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QUESTIONS  FOR  
LOCAL THERMAL EQUILIBRIUM  

 It is a sufficient condition for Ideal Fluid dynamics.  
But is it a necessary condition? 
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Can not be strictly local (compatibility with the 
thermodynamics). 

 

 If not local, how the local covariant theory can 
emerge? 

 

 How much can we say about the inhomogeneous 
nature of the initial conditions?  
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EXAMPLE: 

 Matter density expressed in terms of Lagrange 
Coordinates: 
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 When we don’t have space and time resolution, 
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Physical meaning of  and n:  

“Proper” energy and number densities 
measured in the local rest frame defined with 
the coarse-grained quantities.   
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Reminder:  

For a given coarse-grained profile  0( , )n t r

there are many events in microscopic level, 
that is, there exists a big statistical ensemble.   



Say, W , such  an ensemble that,  
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Densities at a given space and time point,          
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4 ( ( )) 0I d x n x    

for stochastic variable leads to  

T. Koide and T. K, .J. PhysA: 45(25):255204 

Navier-Stokes Eqs. for a viscous fluid, 
in non-relativistic limit ! 

When the fluctuation is not negligible; 

In fact, fluctuations in initial conditions gives a 
similar effect as viscosity 



Event averaged v2 

R. Andrade, et al,, Phys. Rev. Lett., 97:202302 
Ph. Mota et al., Nuclear Physics A, 862:188 , 2011 



• Once arrived to the relativistic Euler equation, 
we cannot tell the coarse-graining scale.  
 

• Transport coefficients, or even effective EoS 
may depend on this scale. 
 

•  Some observables may not be sensitive to this 
scale. If we see only these, we would conclude 
that the ideal hydro works well… 

NOW WE HAVE PROBLEM….. 



IMPORTANT TO STUDY 

 Find observables that are sensitive to 
the coarse graining scale via genuine 
hydro signal 

 

 Event-by-Event hydro  

 

  

 



GENUINE (LOCAL) HYDRODYNAMIC SIGNAL 

  Time evolution of hydrodynamic profile. 

- Not  observable in heavy ion collisions (may be 
shock wave and its thickness,  or  Kelvin-
Helmholtz instability (L. P. Csernai, D. D. 
Strottman, and Cs. Anderlik.  Phys. Rev. C, 
85:054901) 

  - Not  observable in heavy ion collisions (may be 
shock 
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NECESSITY FOR SYSTEMATIC STUDIES ON THE 
EFFECTS OF GRANULARITIES IN THE INITIAL CONDITIONS 

 Multi-flux tube inspired model Gaussian with 
the width s and the 
energy 0  =  T /N   



Sensitivity of v2 /e2 

Event averaged v2 /e2 is not sensitive to the 
granularity, although almost looses the EbE 
correlation for high granularity    



Average pT as function of freezeout time  

Granular 

Smooth 



Average pT as function of freezeout time  

Granular 

Smooth 

Bulk 
contribution 

Presence of 
hot spots near 
surface 



Early time 



Later time 



TAKE A LOOK ON THE NEXSPHERIO1) CASE 

 

1)  See J. Takahashi’s talk  





n-dependence of event averaged vn/n 
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PART II 

DISSIPATIVE HYDRO IN VARIATIONAL PRINCIPLE 

  Variational Method ->  Lagrangian Sytem 
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  Can we deal with dissipative dynamics via Variational 
Principle? 
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Include NOISES…. 
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q(t) 
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VARIATIONAL FORMULATION WITH NOISES?  



q(t) 

t 

Fixed 

VARIATIONAL FORMULATION WITH NOISES?  



What is the problem for the variational 
approach when the trajectory of fluid 
elements are stochastic ?? 



73 
𝑡𝑓 = 𝑡 + 𝑑𝑡 𝑡 

𝒓𝒊 𝒓𝒇 

If we start from t, at     , we don’t arrive at  𝒓𝒊 𝒓𝒇 



𝑡𝑓 = 𝑡 + 𝑑𝑡 𝑡 

𝒓𝒊 𝒓𝒇 

We need Stochastic Process to arrive at       but 
then we cannot start from  

𝒓𝒇 

𝒓𝒊 



𝑡𝑓 = 𝑡 + 𝑑𝑡 𝑡 

𝒓𝒊 𝒓𝒇 

We need both stochastic processes… ! 



𝑡𝑓 = 𝑡 + 𝑑𝑡 𝑡 

𝒓𝒊 𝒓𝒇 

Mathematically, the so-called Bernstein Process 



VARIATIONAL PRINCIPLE WITH NOISES?  

77 

( , )

b

a

I dtL X DX 

Generalize variables into the domain of stochastic variables  

We are talking necessarily the ensemble of trajectories …. 

Yasue, J. Funct. Anal, 41, 327 (‘81), Guerra&Morato, Phys. Rev. D27, 1774 

(‘83), Nelson, “Quantum Fluctuations” (‘85). 



THERE ARE TWO VELOCITIES AT A POINT 
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FOKKER-PLANK EQUATION  
FOR A GIVEN STOCHASTIC MOTION  
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We define the probability density function as  

One Solution of the SDE Average over all solutions SDE 
for a given initial condition. 
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( , ) ( ( ))x t x x t  

We define the probability density function as  

One Solution of the SDE 

( , ) ( , ) ( ( ), ) ( ( )) ( ( ))x t dt x t u x t t x x t dt x x t dt            

 ( , ) ( , ) ( , )t x t u x t x t      
We get the  
Fokker-Plank 
Equation 

Average over all solutions SDE 
for a given initial condition. 



CONSISTENCY CONDITION FOR THE STATISTICAL 
ENSEMBLE 

81 

Fokker-Plank equation (Forward) 

 t u      

Fokker-Plank equation (Backward) 

 t u      

The two equation must be equivalent. 

2 lnu u    
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TWO “FLUID” VELOCITIES 



WHAT MAKES DIFFERENCE IN VARIATIONAL METHOD 
WHEN VARIABLES ARE STOCHASTIC? 
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WHAT MAKES DIFFERENCE IN VARIATIONAL METHOD 
WHEN VARIABLES ARE STOCHASTIC? 
PARTIAL INTEGRATION FORMULA ! 

84 

Mean forward derivative Dr u

Mean backward derivative Dr u

stochastic partial integration formula 
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D
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Because of the two definitions of velocities, 
we introduce two different time derivative operators 
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  
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Take the case 3 (time reversal symmetry) 
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Classical Action 



VARIATIONAL PRCEDURE 

r r r 

( ) ( ) ( ) ( )
2

b b

a a

D D
m

dt r r m dt r rD D    

( )

b

a

m dt u D r 
b

a

Dm dt u r  

 tDu u u     From Ito formula,  



SINGLE PARTICLE CASE 

0I 

   
2
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              

   2 1/ 2 2 1
2t m mu u V

m
          

( ) / 2mu u u 

0  u u

/t u d dt   

Note that when              (no noise), we have  

  0,mt u    

leads to 

and 
1du

V
dt m

  

Instead of two velocities, use                              and  
 
                                 we get Euler – like equation 
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Note that when              (no noise), we have  
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leads to 

and 
1du

V
dt m

  

Instead of two velocities, use                              and  
 
                                 we get Euler – like equation 

Equation for a trajectory 
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   2 1/ 2 2 1
2t m mu u V

m
          

  0,mt u    

A closed set of equations 

An interesting representation: 
Suppose the velocity field is irrotational. Then 
we can introduce a scalar function      such that 

/(2 )mu  

   2 1/ 2 2 1
0t V

m
      

         
 



(Velocoty potential) 



90 

   2 1/ 2 2 1
2t m mu u V

m
          

  0,mt u    

The Fokker-Planck equation  

/(2 )mu  

   2 1/ 2 2 1
0t V

m
      

         
 

 2 0,t        

,ie  

2 1
,

2
ti V

m
  



 
     

 

These two equations are equivalent to a complex equation, 
 
 
                                                   with 
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   2 1/ 2 2 1
2t m mu u V
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The Fokker-Planck equation  
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   2 1/ 2 2 1
0t V

m
      

         
 

 2 0,t        

, / 2 .ie m   
2

2 ,
2

ti V
m

 
 

     
 

That is, this is equivalent to Schrödinger Equation  
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In resume, 
2
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cla
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m dr t
I dt V r t

dt

  
      

Classical Action 
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( )
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b
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a

m r r
I dt V r

DD 
 

   2 1/ 2 2 1
2t m mu u V

m
          

  0,mt u    

The corresponding Fokker-Planck equation  

,

2 ,

/ 2 .

ie

u

m

 

 





 



2
2 ,

2
ti V

m
 

 
     

 

Schrödinger Equation  

Stochastic Action 
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NAVIER-STOKES EQUATION 

3 0 0 ( , )
2

b

Traditional Stochastic

a

I I dt d rDR r SD
 

 


 
   

 
 

T. Koide and T. K, .J. PhysA: 45(25):255204 
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NAVIER-STOKES EQUATION 

3 0 0 ( , )
2

b

Traditional Stochastic

a

I I dt d rDR r SD
 

 


 
   

 
 

 3

0

1
b

t

a

T
I dt d R u u P r S    

 

 
          

 
 

from kinetic term from potential term 

T. Koide and T. K, .J. PhysA: 45(25):255204 
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NAVIER-STOKES EQUATION 

T. Koide and T. K, .J. PhysA: 45(25):255204 
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NAVIER-STOKES EQUATION 

T. Koide and T. K, .J. PhysA: 45(25):255204 
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GROSS-PITAEVSKII EQUATION 

3 0 0 (
2

)
2

b

Stochastic

a

r r r r
I dt d R

D D D D 
 
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1 1
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      
 
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
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ANOTHER INTERESTING EAMPLE 

 
2

.
2

b

t

Classic

a

m dx
I dt V x e

dt


  

   
   



Classical  damped motion 

2 *
2 ln ,

2
ti V i

m


    



  
       

  

* * *

ln ln ln
  


  

 

S
V
M 

Optical-potential-like equation, known as 
Kostin Equation  



• It is important to know what is the 
“Thermalization” scale realized in heavy ion 
collisions. Depends on what we observe. 
• Transport coefficients, or even effective EoS 
may depend on this scale. 
•  Some observables are not sensitive to this 
scale. If we can see only these, we would think 
really the hydro works well … 
 

•Can the difference of identified particle flow 
pattern can see this  

SUMMARY 



•  Can the difference of identified particle flow  
    pattern see this ? 
•  Variational approach with noises for 
   Relativistic fluid. 
 
• Use of transport code (PHSD*, UrQMD) and 

construct Hydro introducing coarse graining 
and see the effects…  

     
   * Elena Bratkovskaya’s talk.   

OUTLOOK 
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