ROLE OF COARSE-GRAINING SIZE FOR LOCAL THERMAL EQUILIBRIUM AND NON HOMOGENEITIES IN INITIAL CONDITION

Takeshi Kodama

Federal University of Rio de Janeiro - UFRJ

ExtreMe Matter Institute EMMI

ROLE OF COARSE-GRAINING SIZE FOR LOCAL THERMAL EQUILIBRIUM AND NON HOMOGENEITIES IN INITIAL CONDITION

Collaboration with Philipe de A. Mota - FIAS Rafael D. Souza - UNICAMP Jun Takahashi – UNICAMP Tomoi Koide - UFRJ

ROLE OF COARSE-GRAINING SIZE FOR LOCAL THERMAL EQUILIBRIUM AND NON HOMOGENEITIES IN INITIAL CONDITION - Ph Mota, et al, EP A48, 1-12, 2012 - T Koide & T. K. JPhysA 45, 255204, 2012 **Collaboration with** Philipe de A. Mota FIAS Rafael D. Souza - UNICAMP Jun Takahashi – UNICAMP Tomoi Koide - UFRJ **FIAS** Frankfurt Institute for Advanced Studies ExtreMe Matter Institute EMMI

COMMON STATEMENT :

SUCCESS OF (ALMOST IDEAL) HYDRODYNAMIC DESCRIPTION IN RELATIVISTIC HEAVY ION COLLISIONS

COMMON STATEMENT :

SUCCESS OF (ALMOST IDEAL) HYDRODYNAMIC DESCRIPTION IN RELATIVISTIC HEAVY ION COLLISIONS

Expectations and hopes :

- Determination of Properties of Matter (EoS, Transport coefficieints)
- Comparison with Lattice QCD
- Determination of Initial State just after the Collision
- Key for the QCD dynamics…

COMMON STATEMENT WE HEAR FREQUENTLY:

SUCCESS OF (ALMOST IDEAL) HYDRODYNAMIC DESCRIPTION IN RELATIVISTIC HEAVY ION COLLISION Local Thermal Equilibirum

Expectations and hopes :

- Determination of Properties of Matter (EoS, Transport coefficieints)
- Comparison with Lattice QCD
- Determination of Initial State just after the Collision
- Key for the QCD dynamics…

VERY NICE, SHOULD BE PUSHED FORWARD.

HOWEVER,

When a theorist cooks his model,..

Sometimes his model may be "licked"....

YOU WANT YOURS LICKED OR NOT LICKED?

Sometimes his model may be "licked"....

YOU WANT YOURS LICKED OR NOT LICKED? Just kidding.., They are ALL licked…

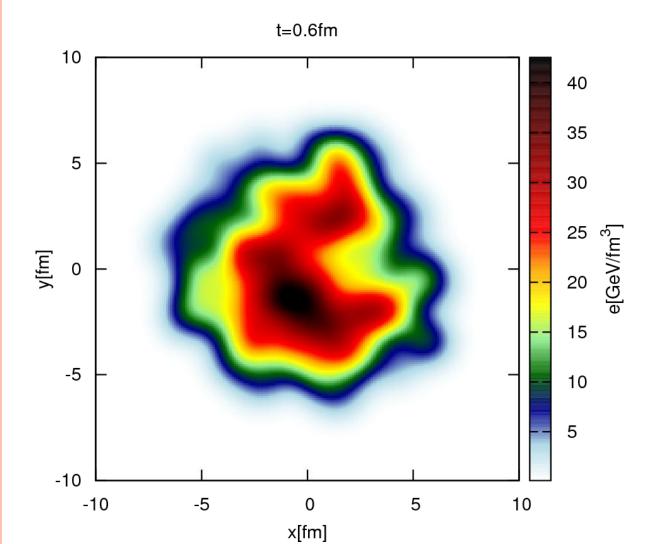
Relativistic Hydrodynamics as Covariant Local Classical Field Theory

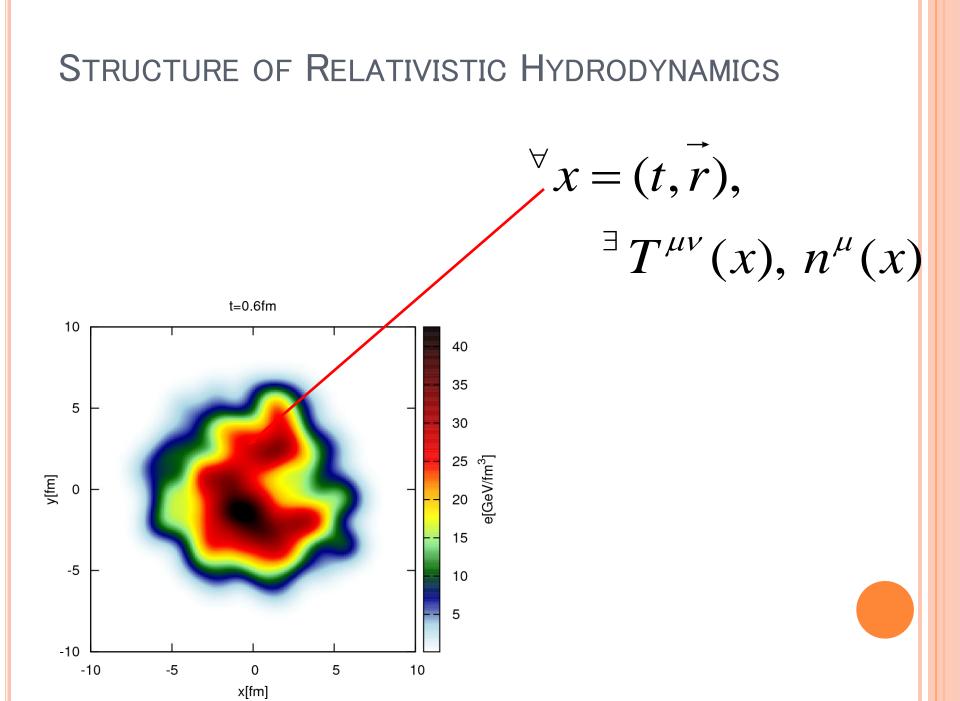
 Local Thermal Equilibrium is sometimes considered as a necessary condition

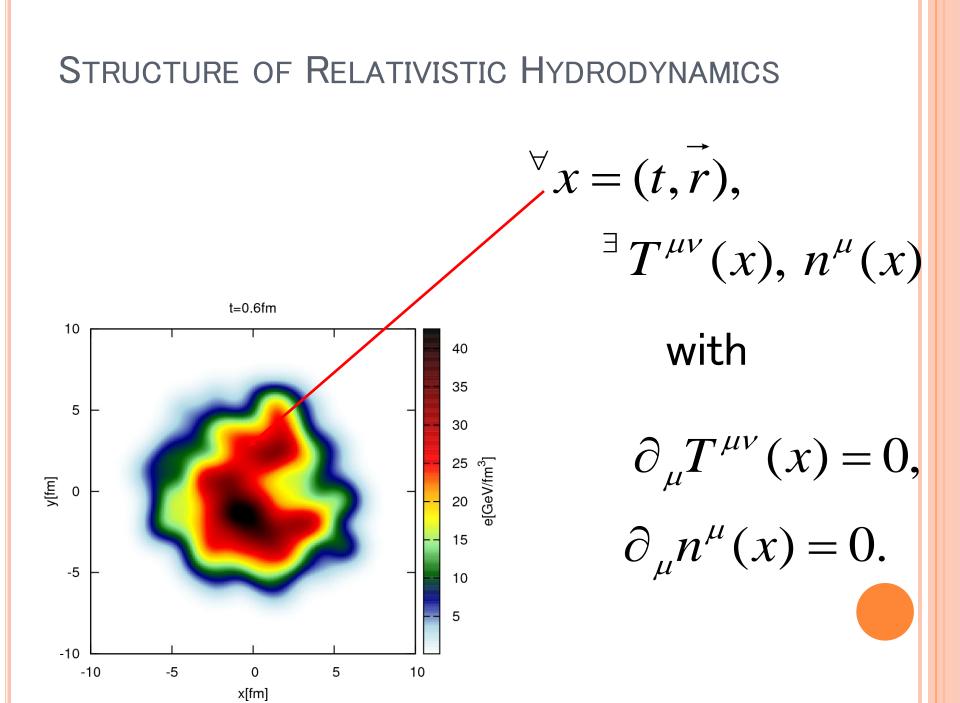
• Not necessarily even *Conflicting*, if strictly local.

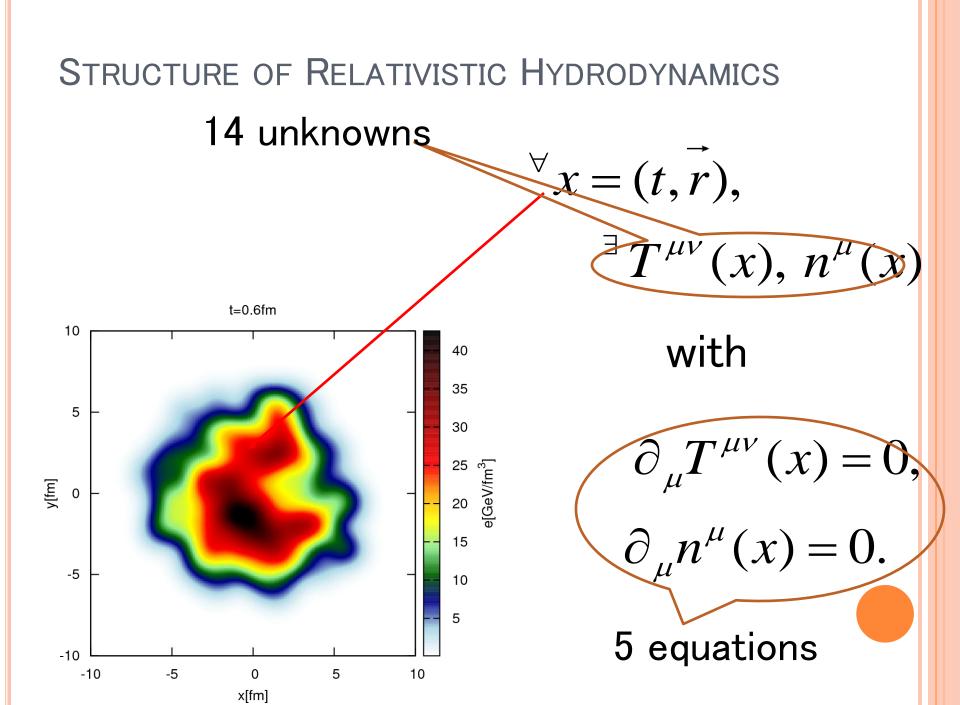
STRUCTURE OF RELATIVISTIC HYDRODYNAMICS

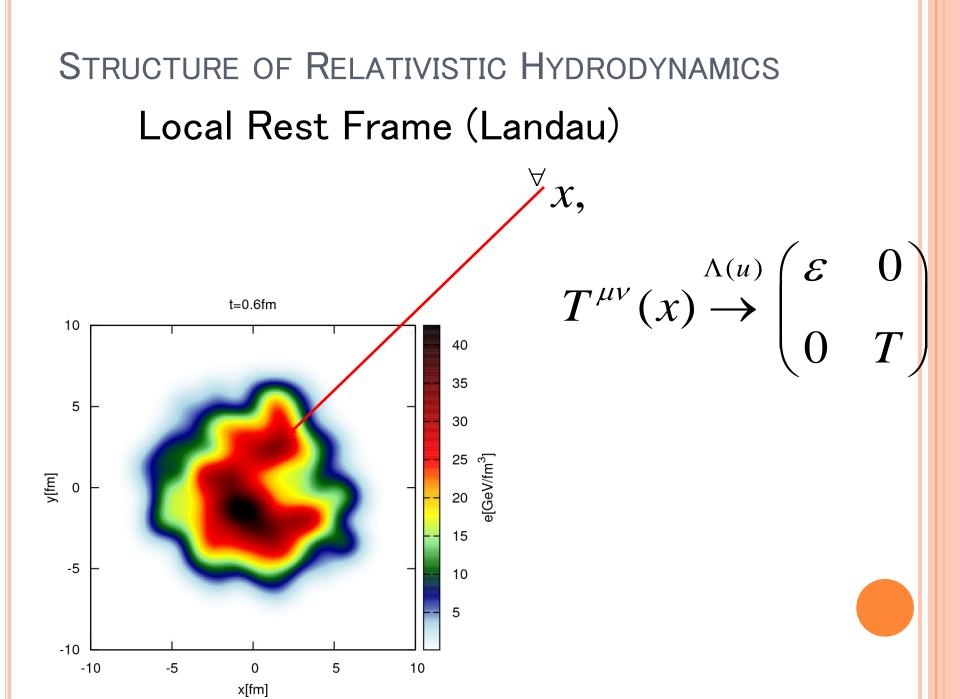
STRUCTURE OF RELATIVISTIC HYDRODYNAMICS

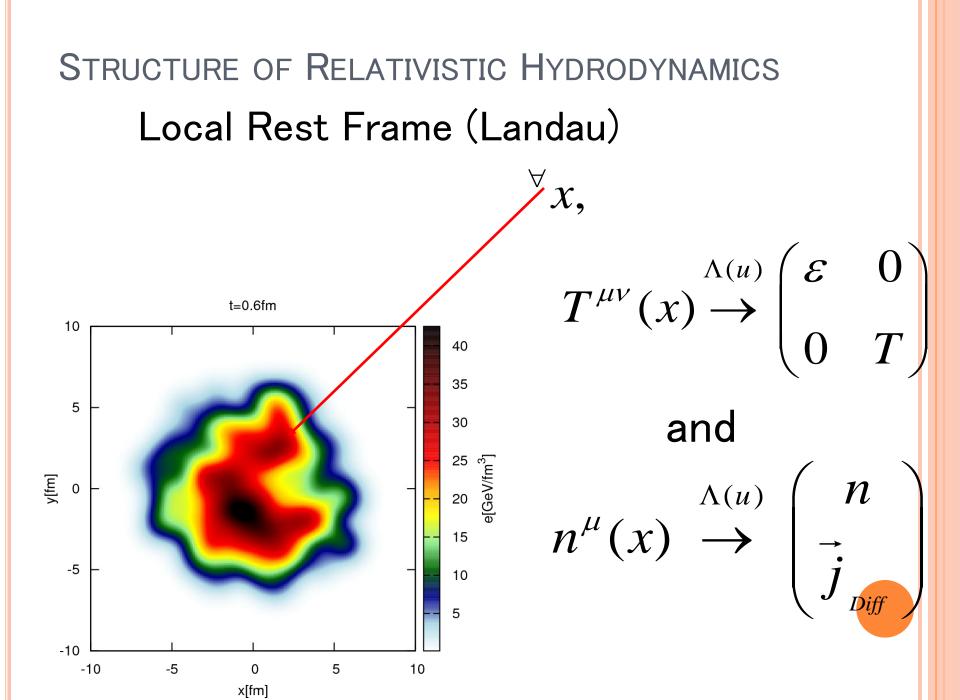










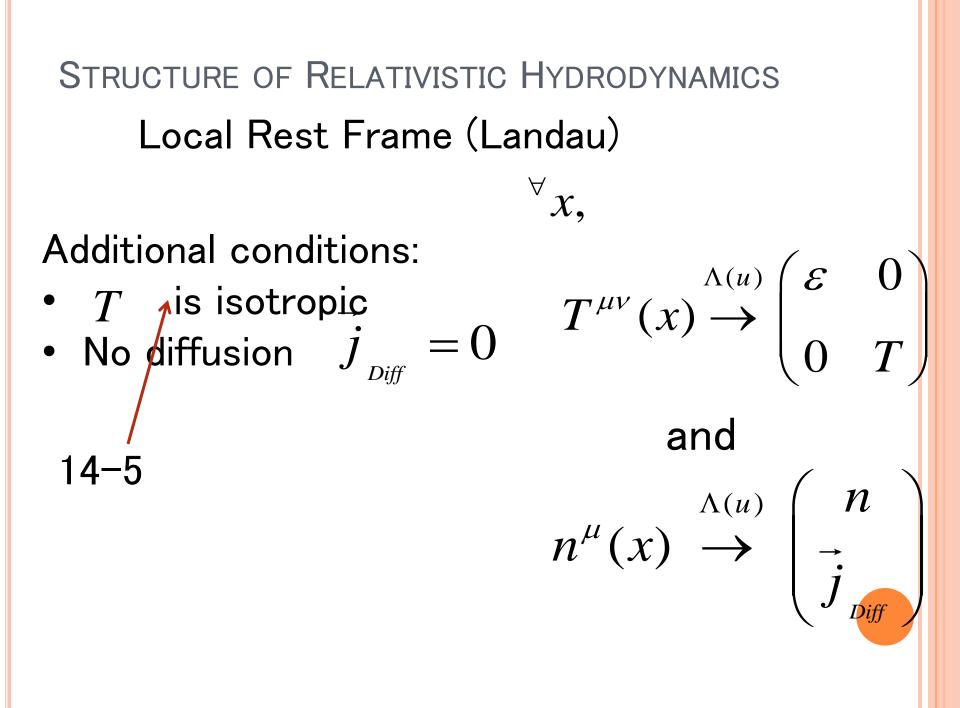


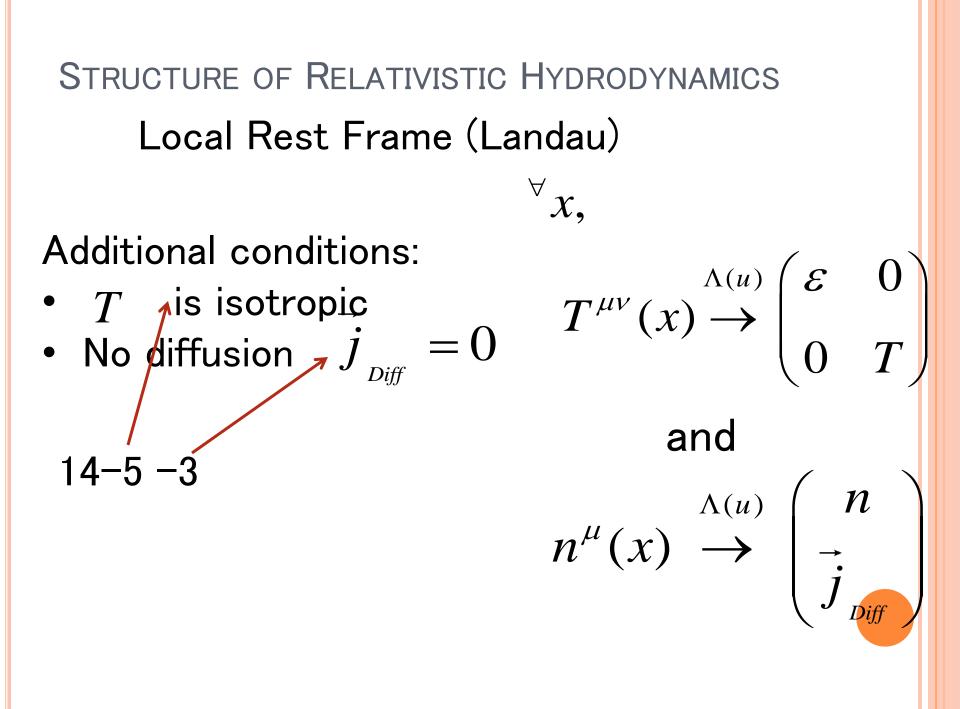
STRUCTURE OF RELATIVISTIC HYDRODYNAMICS Local Rest Frame (Landau)

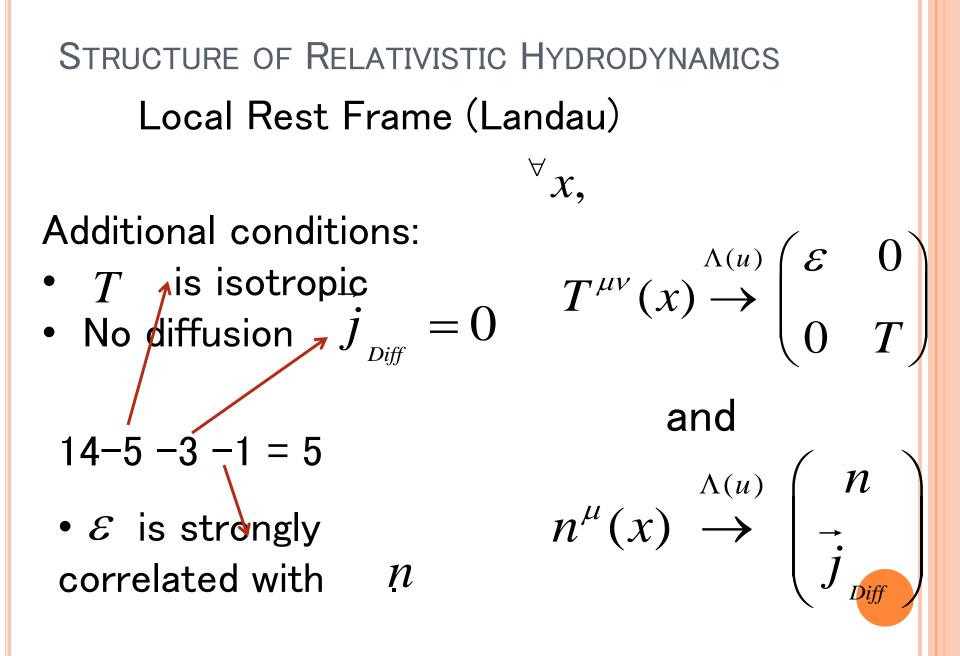
Additional conditions:

- T is isotropic No diffusion $\dot{j}_{_{Diff}} = 0$

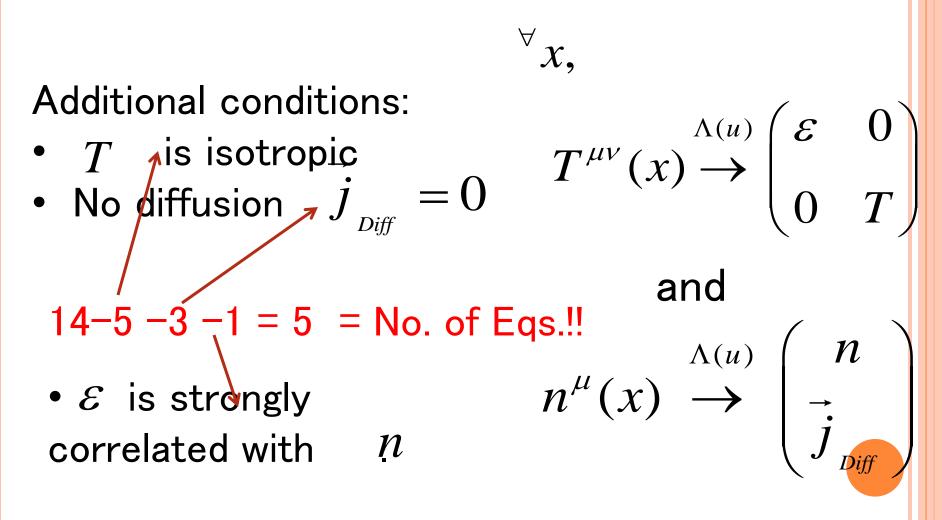
 $^{\forall} x$, $T^{\mu\nu}(x) \xrightarrow{\Lambda(u)} \begin{pmatrix} \mathcal{E} & 0 \\ & \\ 0 & T \end{pmatrix}$ and $n^{\mu}(x) \xrightarrow{\Lambda(u)} \begin{pmatrix} n \\ \neg \\ j \end{pmatrix}$

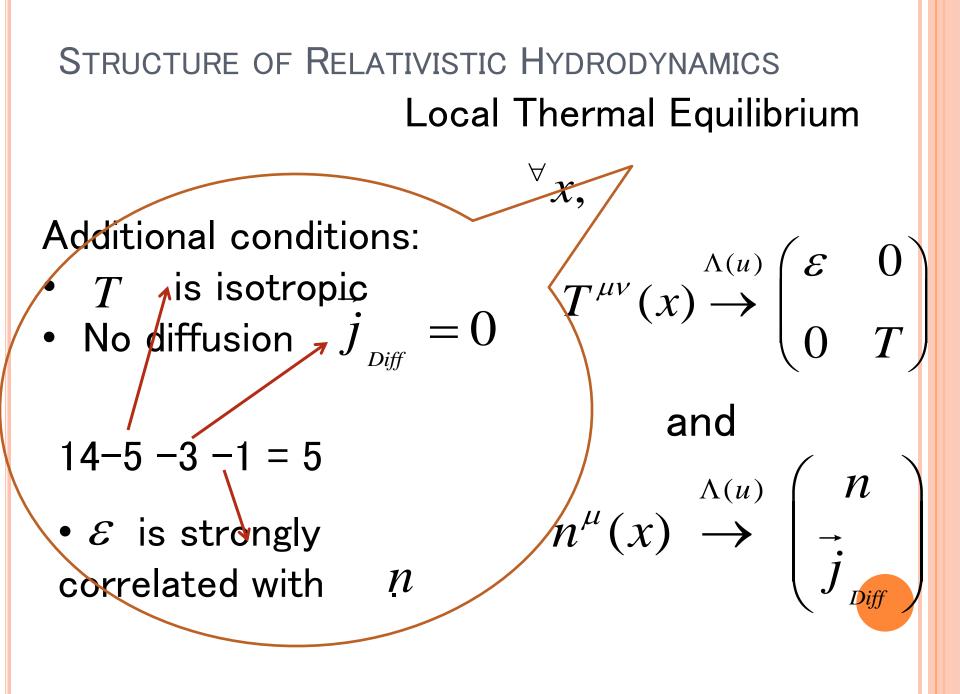






STRUCTURE OF RELATIVISTIC HYDRODYNAMICS Ideal fluid case





QUESTIONS FOR LOCAL THERMAL EQUILIBRIUM

 It is a sufficient condition for Ideal Fluid dynamics. But is it a necessary condition?

• How local?

Can not be strictly local (compatibility with the thermodynamics).

• If not local, how the local covariant theory can emerge?

• How much can we say about the inhomogeneous nature of the initial conditions?

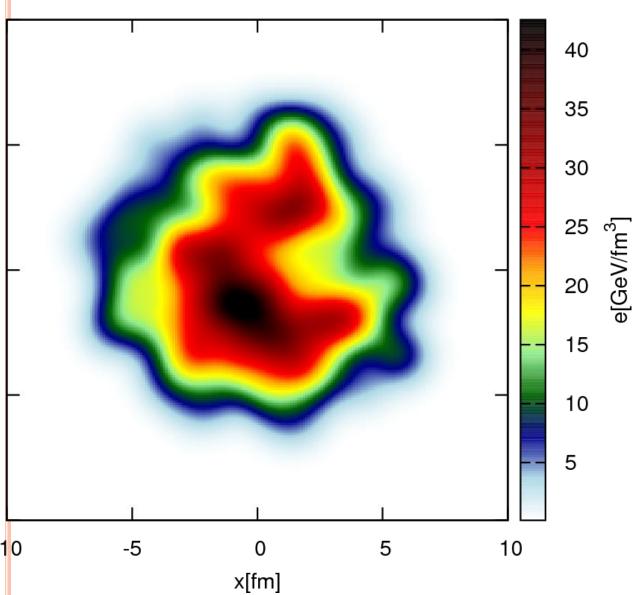
QUESTIONS FOR LOCAL THERMAL EQUILIBRIUM

 It is a sufficient condition for Ideal Fluid dynamics. But is it a necessary condition?

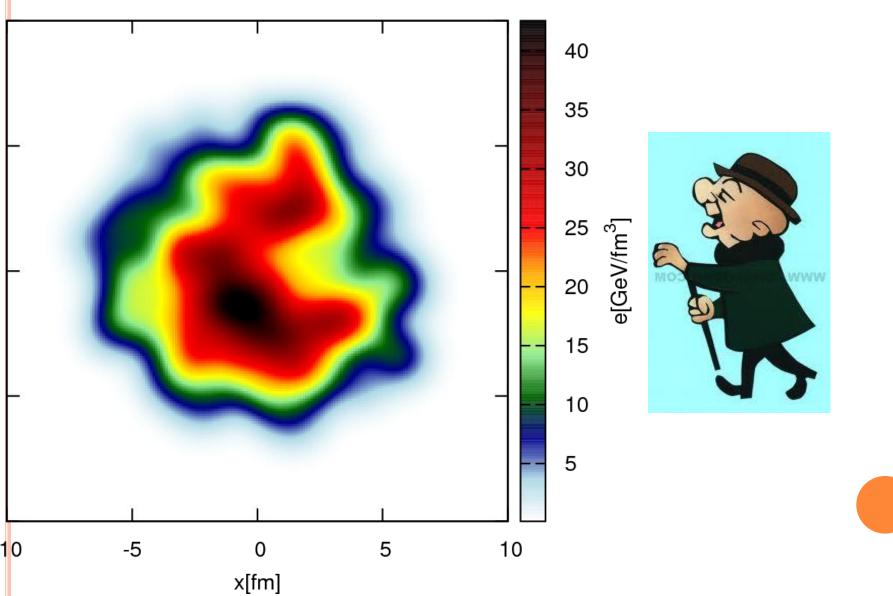
• How local? Can not be strictly local (compatibility with the Recovery Strict) Thermodynamics

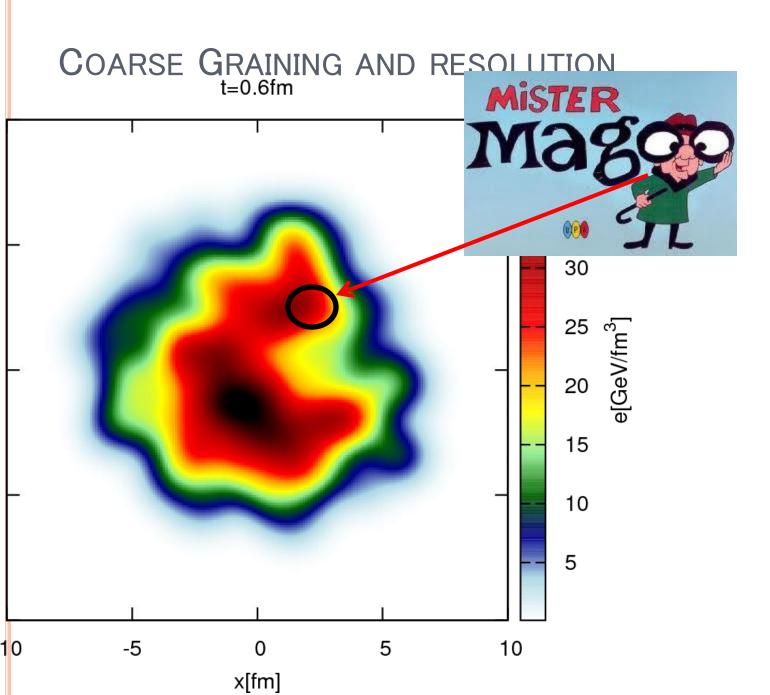
o If not local, how the local covariant theory can emerge?

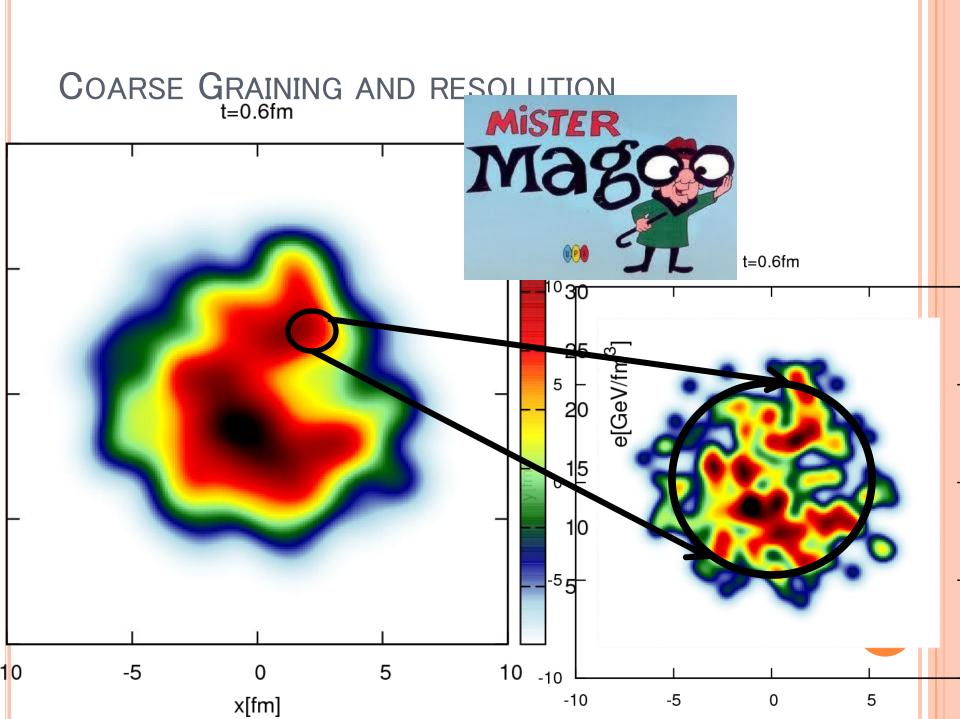
• How much can we say about the inhomogeneous nature of the initial conditions?



$COARSE \; GRAINING \; \text{AND} \; RESOLUTION \\ {t=0.6 \text{fm}}$







EXAMPLE:

• Matter density expressed in terms of Lagrange Coordinates:

$$n^{*}(t, \vec{r}) = \int d^{3}\vec{R} n_{0}(\vec{R}) \,\delta(\vec{r} - \vec{r}_{R}(t))$$

EXAMPLE:

 $n^*(t, r) \rightarrow$

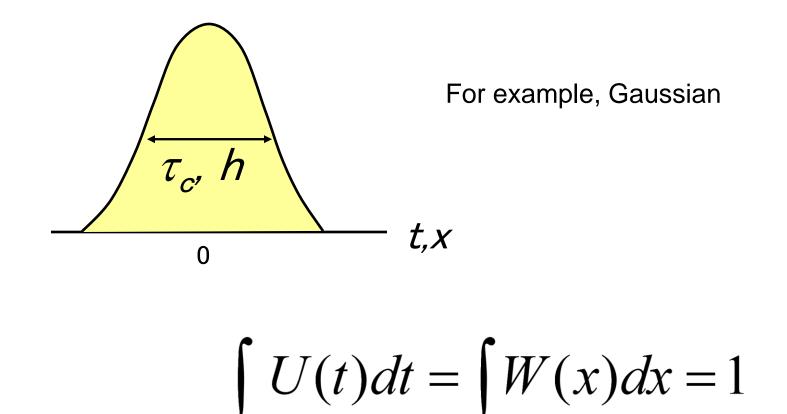
 Matter density expressed in terms of Lagrange Coordinates:

$$n^*(t,\vec{r}) = \int d^3\vec{R} n_0(\vec{R}) \,\delta(\vec{r}-\vec{r}_R(t))$$

• When we don't have space and time resolution,

 $\int dt' d^{3}\vec{R} n_{0}(\vec{R}) U_{\tau_{c}}(t'-t)W_{h}(\vec{r}-\vec{r}_{R}(t))$

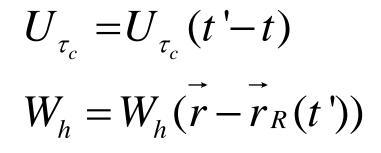
$U_{\tau_c}(t), W_h(\mathbf{x}) \leftrightarrow \text{smoothing kernel}$

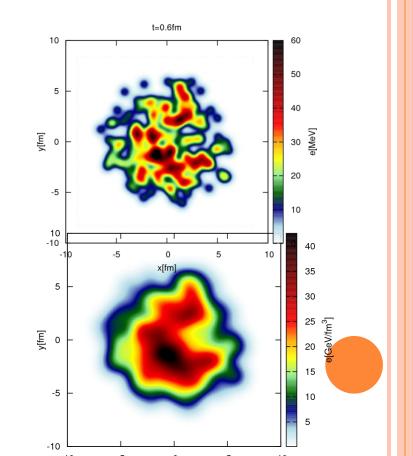


 $n^*(t, \vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h$ $\vec{j}(t,\vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h \frac{dr_M}{dt'}$

 $U_{\tau_{c}} = U_{\tau_{c}}(t'-t)$ $W_h = W_h(\vec{r} - \vec{r}_R(t'))$

 $n^*(t, \vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h$ $\vec{j}(t,\vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h \frac{dr_M}{dt'}$



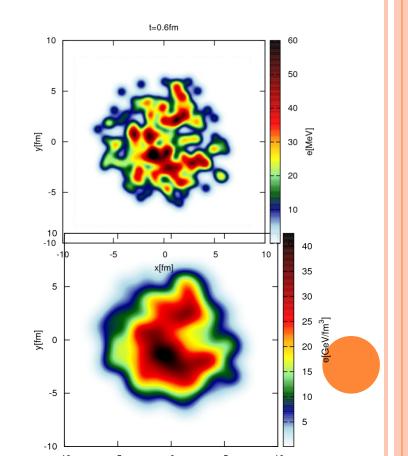


 $n^*(t, \vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h$ $\vec{j}(t,\vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h \frac{dr_M}{dt'}$

$$U_{\tau_c} = U_{\tau_c}(t'-t)$$
$$W_h = W_h(\vec{r} - \vec{r}_R(t'))$$

Not exactly local .. but

$$\partial_t n^*(t, \vec{r}) + \nabla \cdot \vec{j}(t, \vec{r}) = 0$$



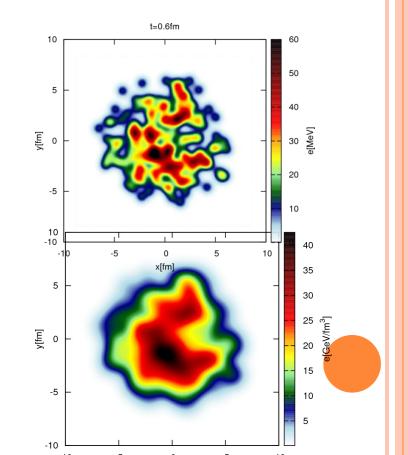
 $n^*(t, \vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h$ $\vec{j}(t,\vec{r}) = \int dt' d^3 \vec{R} n_0(\vec{R}) U_{\tau_c} W_h \frac{dr_M}{dt'}$

$$U_{\tau_c} = U_{\tau_c}(t'-t)$$
$$W_h = W_h(\vec{r} - \vec{r}_R(t'))$$

Even we can write

$$n^{\mu}=(n^*,\vec{j}),$$

$$\partial_{\mu}n^{\mu}=0.$$



We can do this also for $T^{\mu\nu}(x)$

$$T^{\mu\nu}(x) = \int dt' d^{3} \vec{x}' \ U_{\tau_{c}} W_{h} T_{M}^{\mu\nu}(t, \vec{x}')$$

Define $n(t, \vec{r}) = \sqrt{n_{\mu}n^{\mu}}$

$$n(t,r) = \sqrt{n_{\mu}n} ,$$

$$u^{\mu}(t,r) = n^{\mu}/n,$$

$$\vec{\varepsilon}(t,r) = u_{\mu}u_{\nu}T^{\mu\nu},$$

We can do this also for $T^{\mu\nu}(x)$

$$T^{\mu\nu}(x) = \int dt' d^{3} \vec{x}' \ U_{\tau_{c}} W_{h} T_{M}^{\mu\nu}(t, \vec{x}')$$

Define $n(t, \vec{r}) = \sqrt{n_{\mu}n^{\mu}}$,

$$u^{\mu}(t,\vec{r}) = n^{\mu} / n,$$
$$\varepsilon(t,\vec{r}) = u_{\mu}u_{\nu}T^{\mu\nu},$$

Physical meaning of ε and n.

"Proper" energy and number densities measured in the local rest frame defined with the coarse-grained quantities. We can do this also for $T^{\mu\nu}(x)$

$$T^{\mu\nu}(x) = \int dt' d^{3} \vec{x}' U_{\tau_{c}} W_{h} T_{M}^{\mu\nu}(t, \vec{x}')$$

Define $n(t, \vec{r}) = \sqrt{n_{\mu}n^{\mu}}$,

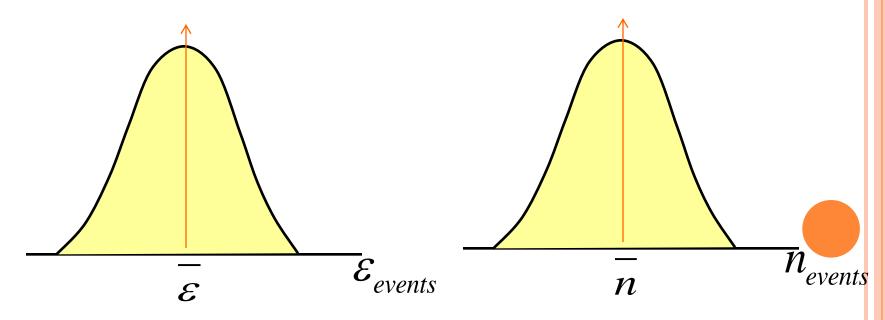
$$u^{\mu}(t,\vec{r}) = n^{\mu}/n,$$
$$\mathcal{E}(t,\vec{r}) = u_{\mu}u_{\nu}T^{\mu\nu},$$

Reminder:

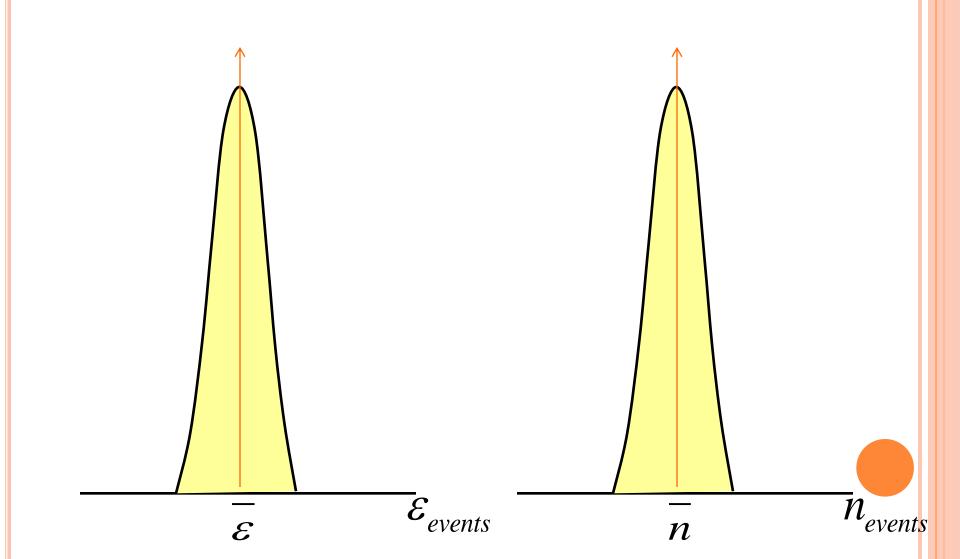
For a given coarse-grained profile $n^{\mu}(t_0, r)$ there are many events in microscopic level, that is, there exists a big statistical ensemble. Say, arOmega , such an ensemble that,

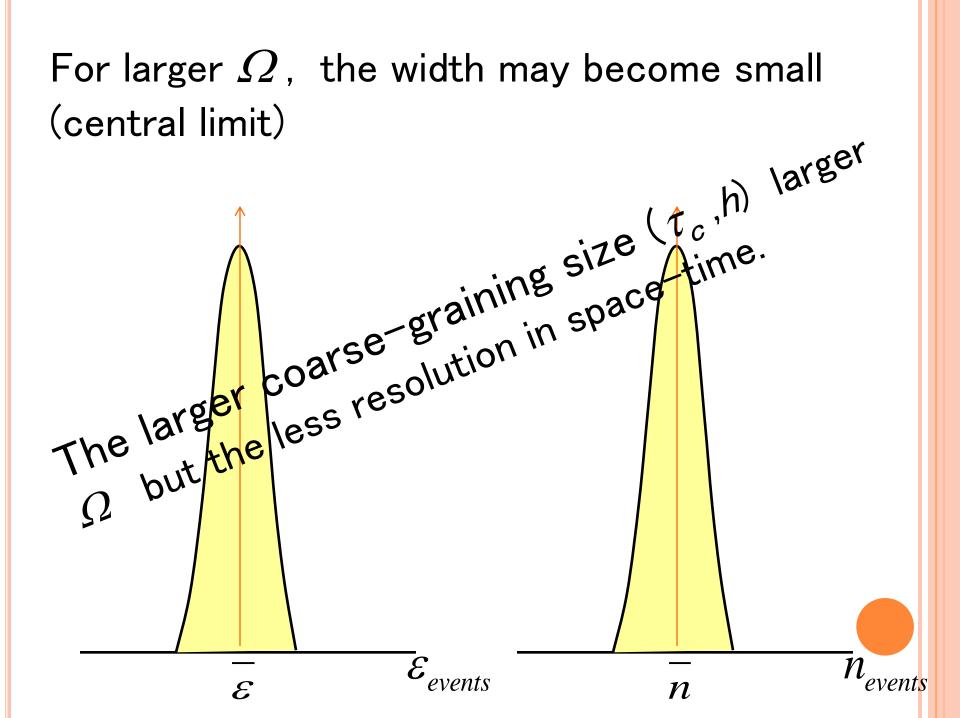
$$\Omega = \left\{ events \mid n^{\mu}(t_0, \vec{r}) = n_0^{\mu}(\vec{r}) \right\}.$$

Densities at a given space and time point,(t, r) \mathcal{E} and n fluctuate event by event in this ensemble, Ω .



For larger \varOmega , the width may become small (central limit)





- 1. ε and n are strongly correlated so that $\overline{\varepsilon} = \overline{\varepsilon}(n)$
- 2. Dynamics in terms of coarse-grained variable, n' is determined by the action,

$$I = -\int d^{4}x \,\overline{\varepsilon}(n(x))$$

- 1. \mathcal{E} and n are strongly correlated so that $\overline{\mathcal{E}} = \overline{\mathcal{E}}(n)$
- 2. Dynamics in terms of coarse-grained variable, n' is determined by the action,

$$I = -\int d^{4}x \,\overline{\varepsilon}(n(x))$$

(continuum generalization of the Lagrangian for a particle)

$$L = -m\sqrt{1 - v^2}$$

$$\delta I = -\delta \int d^4 x \, \overline{\varepsilon}(n(x)) = 0$$

with respect to

$$\overline{n}^{\mu} = (\overline{n}^*, \ \overline{n}^* \overline{v})$$

subject to the constraint

$$\overline{n}_{\mu}\overline{n}^{\mu}=\overline{n}^{2}$$

H-T. Elze, Y. Hama, T. K and J. Rafelski, J. PhysG:25(9):1935, 1999

$$\delta I = -\delta \int d^4 x \, \overline{\varepsilon}(n(x)) = 0$$

with respect to

$$\overline{n}^{\mu} = (\overline{n}^*, \ \overline{n}^* v)$$

subject to the constraint

$$\bar{n}_{\mu}\bar{n}^{\mu} = \bar{n}^{2}$$
leads
$$Relativistic Euler La$$

$$\partial_{\mu}\left\{(\bar{\varepsilon} + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}\right\} = 0, \quad P = \frac{d\bar{\varepsilon}}{dn}\bar{n} - \bar{\varepsilon},$$

EUS.

H-T. Elze, Y. Hama, T. K and J. Rafelski, J. PhysG:25(9):1935, 1999

When the fluctuation is not negligible;

$$\delta I = -\delta \int d^4 x \, \varepsilon(n(x)) = 0$$

for stochastic variable leads to

Navier-Stokes Eqs. for a viscous fluid, in non-relativistic limit !

T. Koide and T. K, .J. PhysA: 45(25):255204

When the fluctuation is not negligible;

$$\delta I = -\delta \int d^4 x \, \varepsilon(n(x)) = 0$$

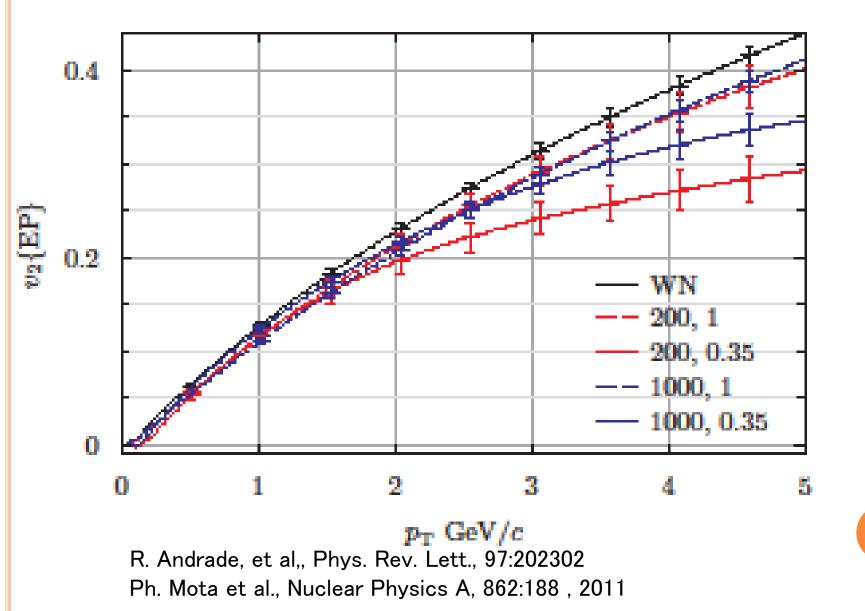
for stochastic variable leads to

Navier-Stokes Eqs. for a viscous fluid, in non-relativistic limit !

In fact, fluctuations in initial conditions gives a similar effect as viscosity

T. Koide and T. K, .J. PhysA: 45(25):255204

Event averaged V_2



```
Now we have problem...
```

- Once arrived to the relativistic Euler equation, we cannot tell the coarse-graining scale.
- Transport coefficients, or even effective EoS may depend on this scale.
- Some observables may not be sensitive to this scale. If we see only these, we would conclude that the ideal hydro works well…

IMPORTANT TO STUDY

 Find observables that are sensitive to the coarse graining scale via genuine hydro signal

o Event-by-Event hydro

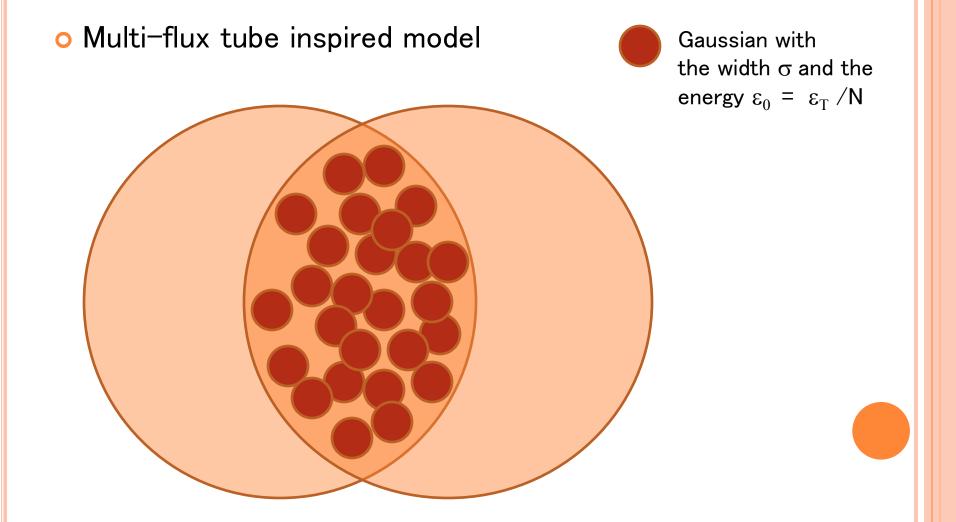
Genuine (Local) Hydrodynamic Signal

• Time evolution of hydrodynamic profile.

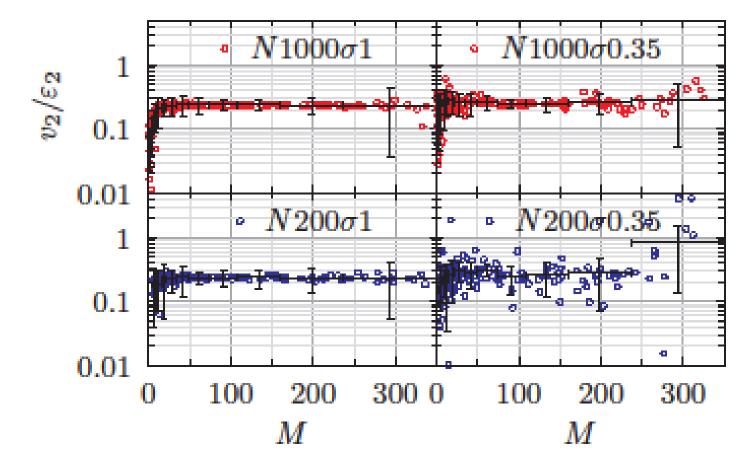
Genuine (Local) Hydrodynamic Signal

- Time evolution of hydrodynamic profile.
- Not observable in heavy ion collisions (may be shock wave and its thickness, or Kelvin– Helmholtz instability (L. P. Csernai, D. D. Strottman, and Cs. Anderlik. Phys. Rev. C, 85:054901)

NECESSITY FOR SYSTEMATIC STUDIES ON THE EFFECTS OF GRANULARITIES IN THE INITIAL CONDITIONS

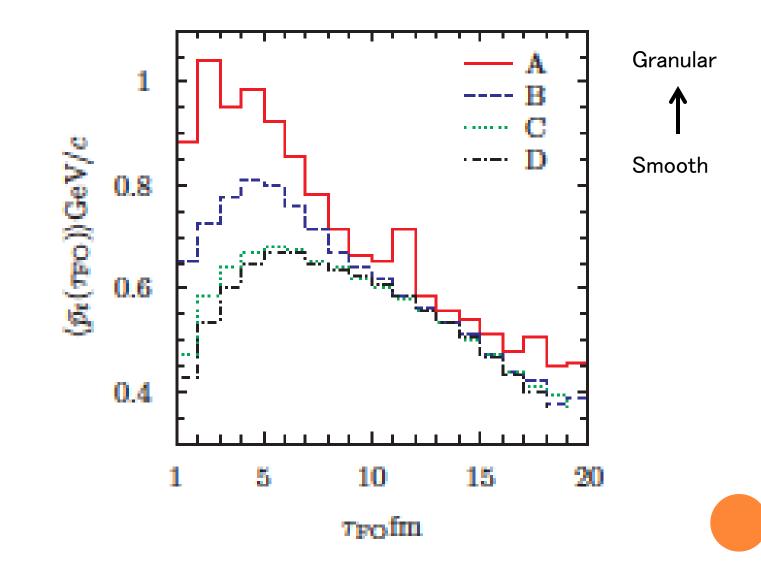


Sensitivity of v_2 / e_2

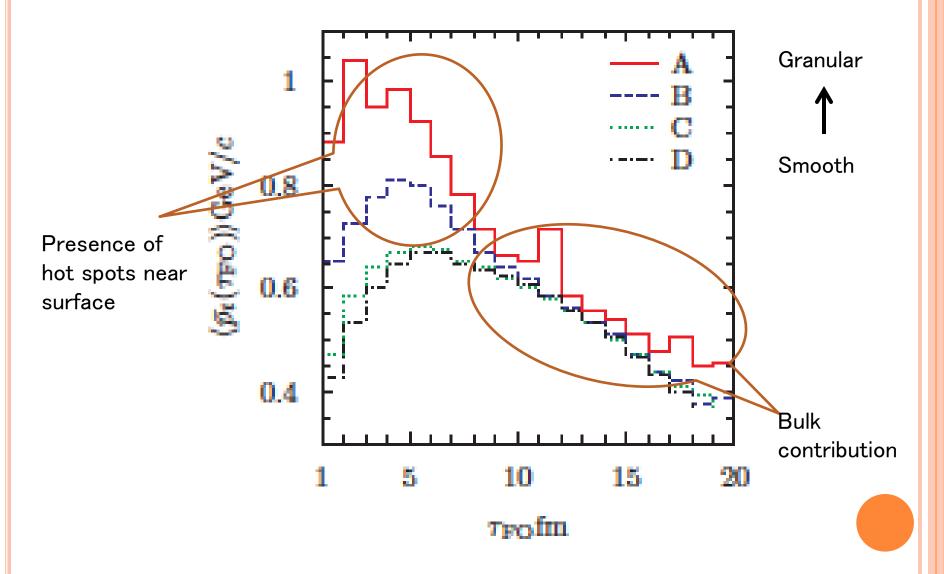


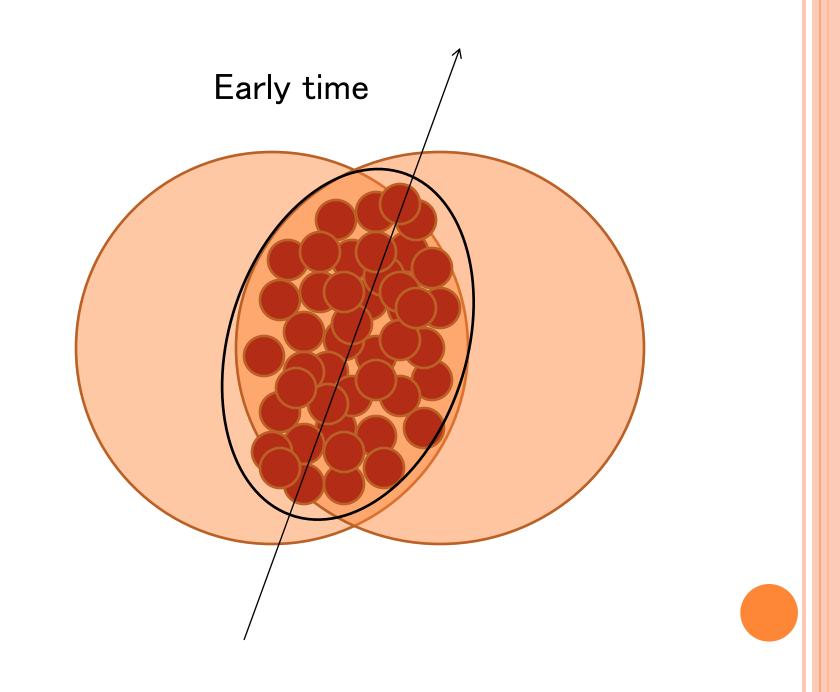
Event averaged $v_2 \neq e_2$ is not sensitive to the granularity, although almost looses the EbE correlation for high granularity

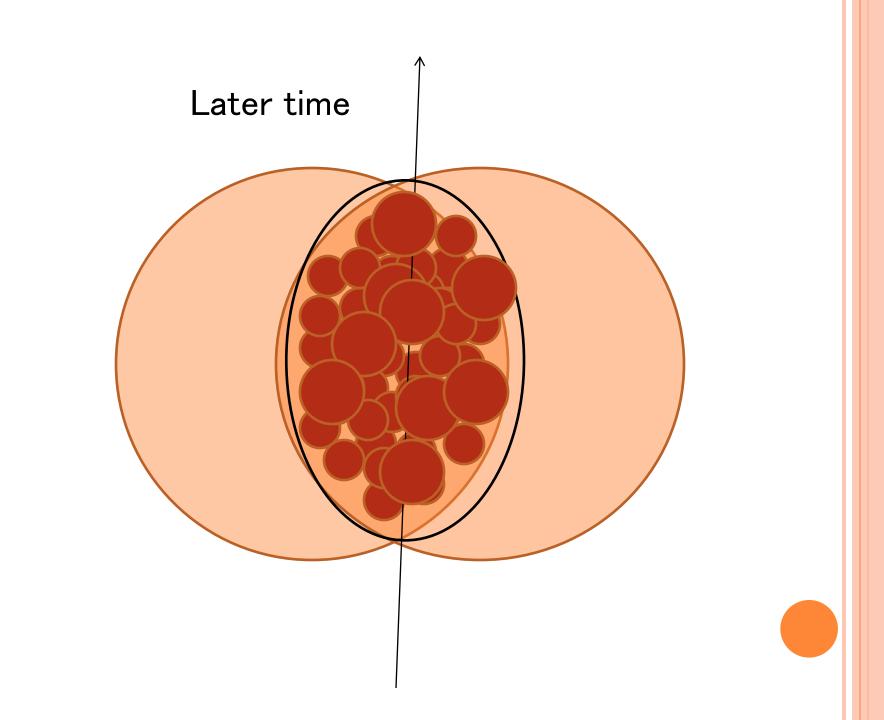
Average \textbf{p}_{T} as function of freezeout time



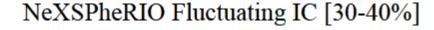
Average p_{T} as function of freezeout time

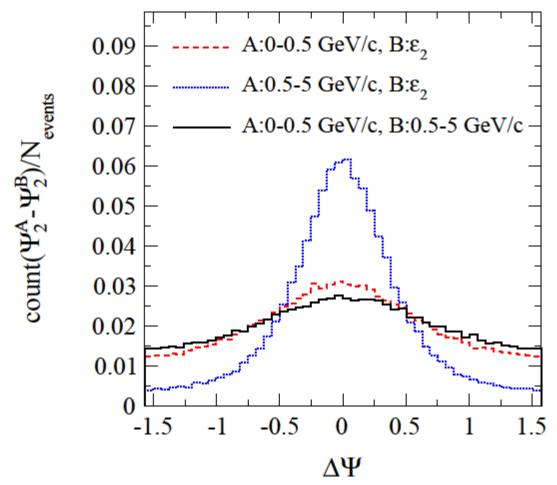




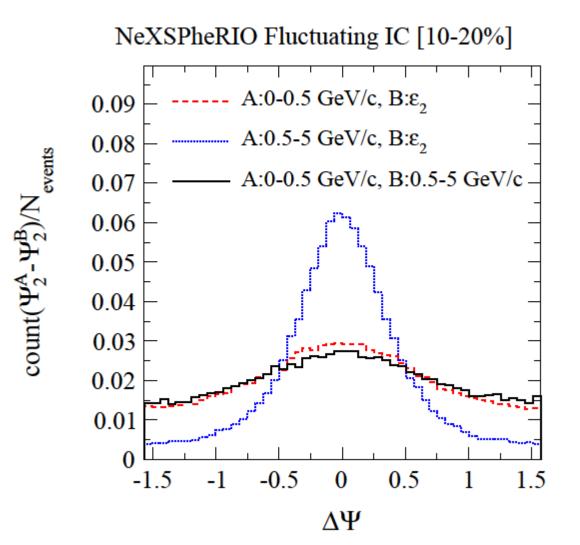


TAKE A LOOK ON THE NEXSPHERIO¹⁾ CASE



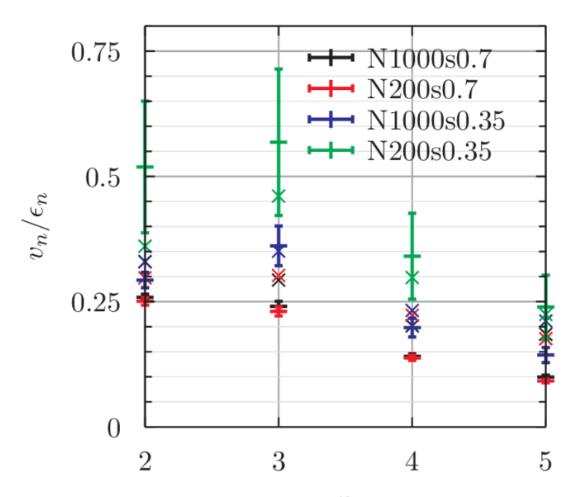


1) See J. Takahashi's talk



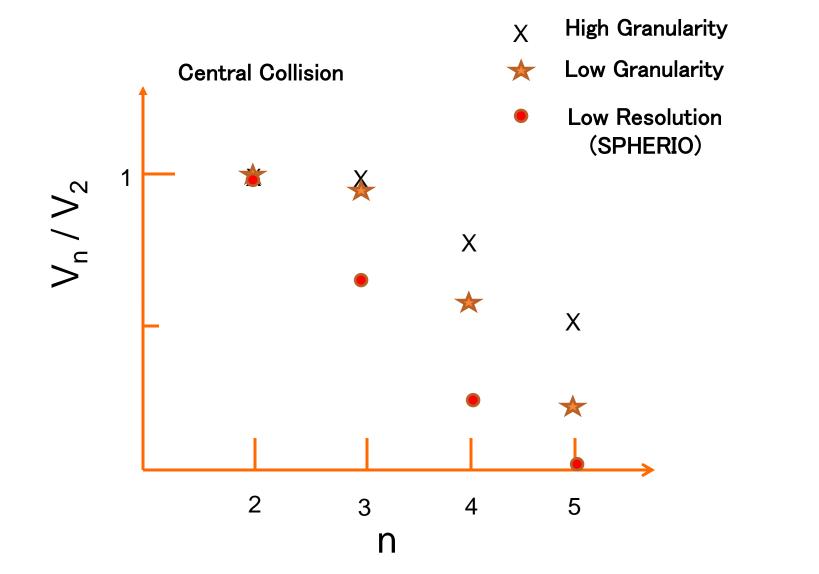
n-dependence of event averaged v_n / ε_n

crosses: $p_t = 0.5 - 5$ GeV and 10-50%; bars:10-50%

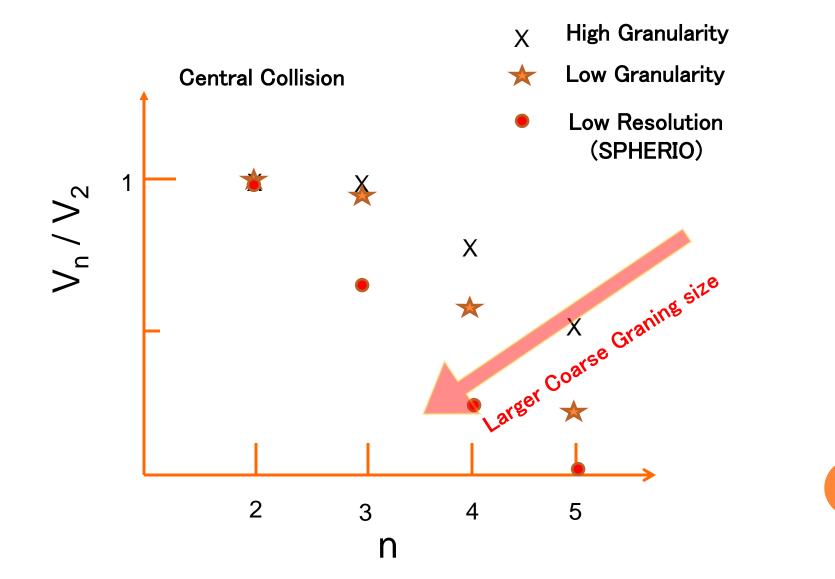


n

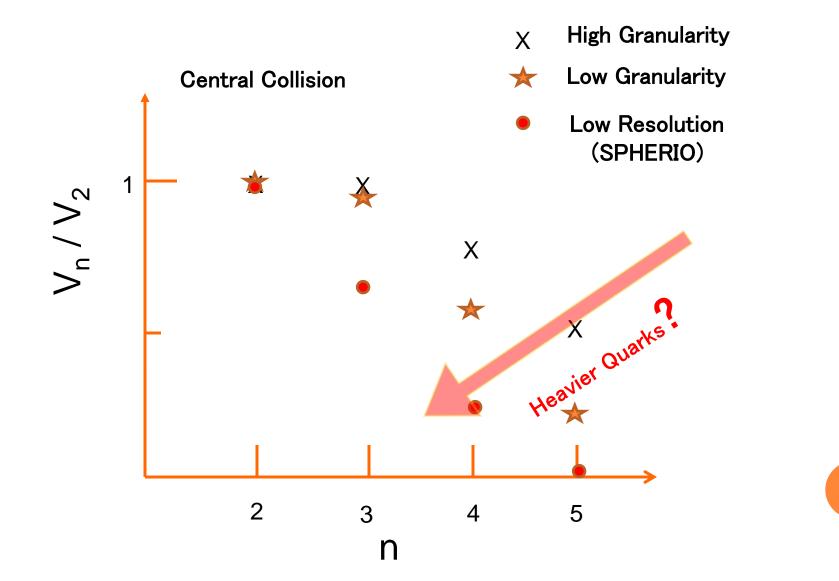
Effects of Coarse Graining in Flow



Effects of Coarse Graining in Flow



Effects of Coarse Graining in Flow



Part II

DISSIPATIVE HYDRO IN VARIATIONAL PRINCIPLE

• Variational Method -> Lagrangian Sytem ↓ Conservative (Normal)

• Can we deal with dissipative dynamics via Variational Principle?

Part II

DISSIPATIVE HYDRO IN VARIATIONAL PRINCIPLE

• Variational Method -> Lagrangian Sytem ↓ Conservative (Normal)

• Can we deal with dissipative dynamics via Variational Principle?

Include NOISES....

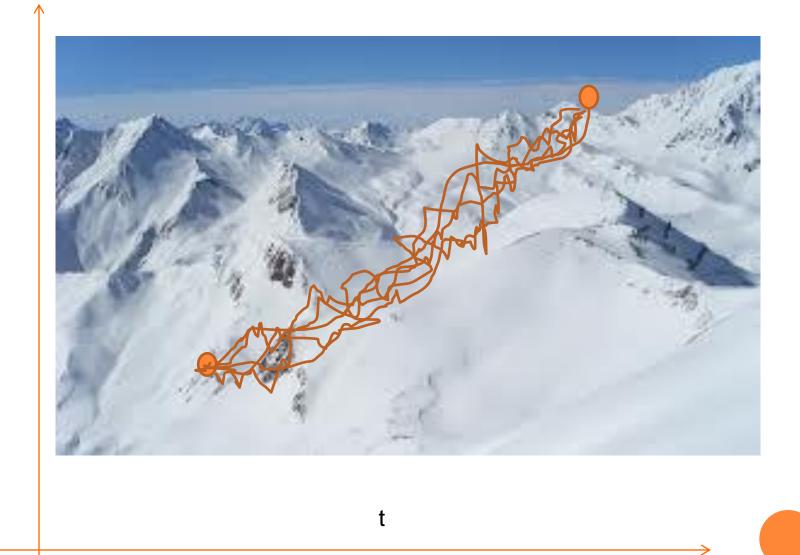
Without noises

 $\frac{d}{dt}X(t) = V(t)$

With noises

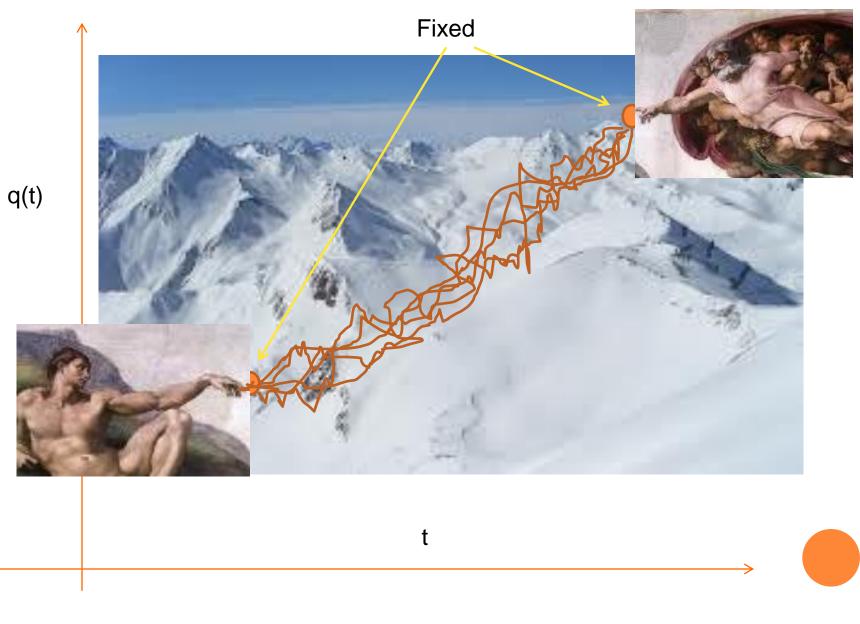
 $\frac{d}{dt}X(t) = V(t) + \xi(t)$

VARIATIONAL FORMULATION WITH NOISES?

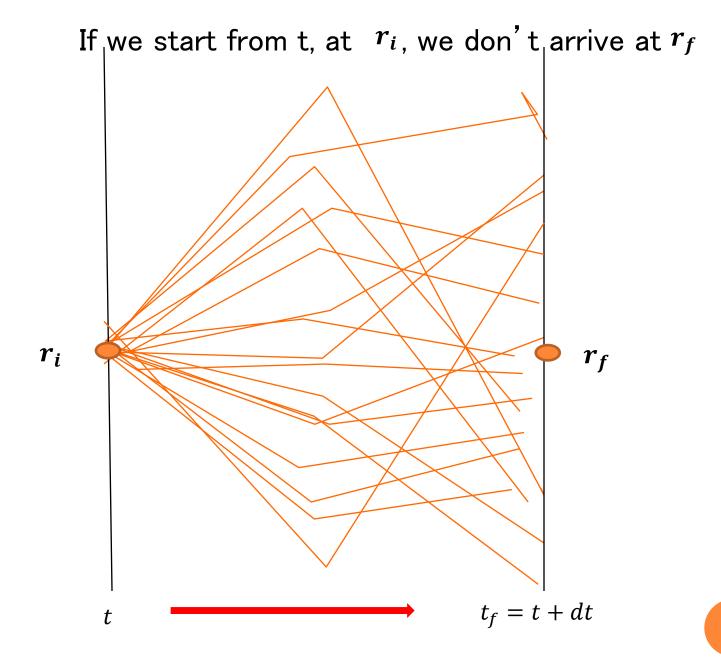


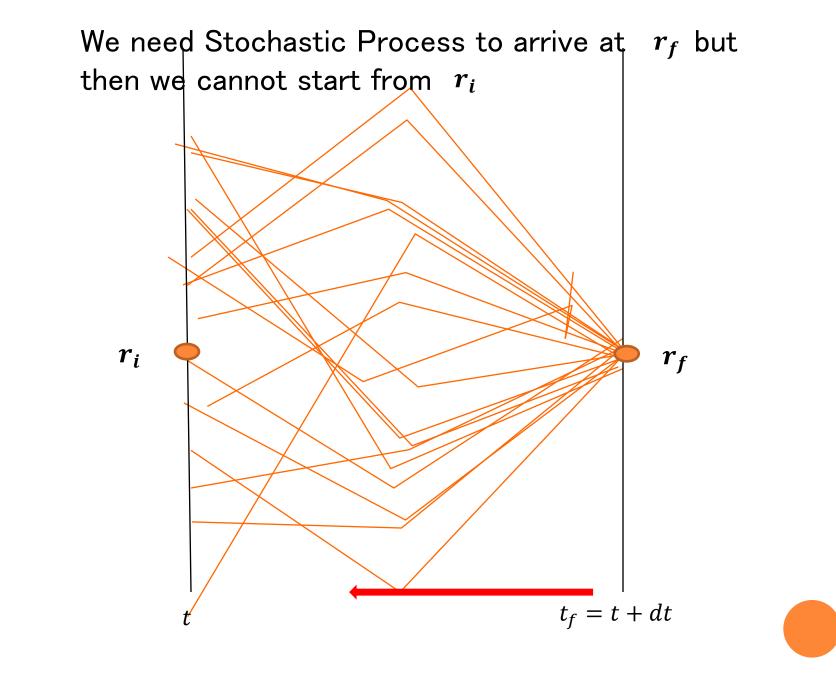
q(t)

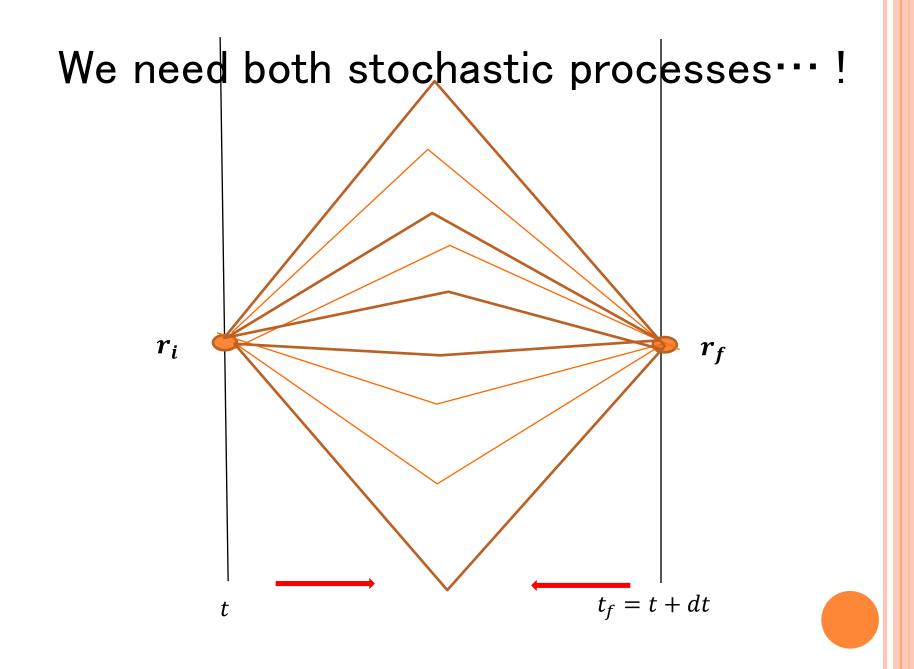
VARIATIONAL FORMULATION WITH NOISES?

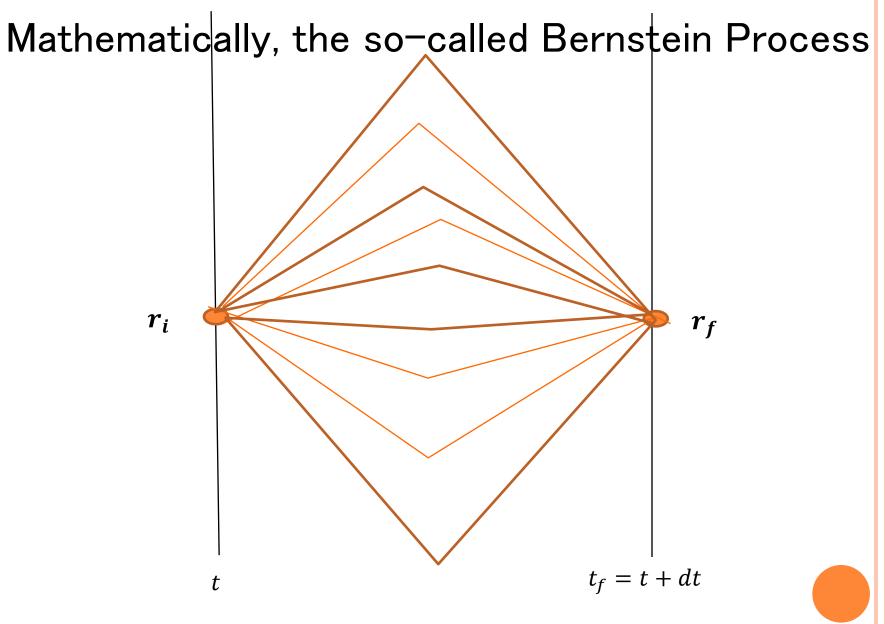


What is the problem for the variational approach when the trajectory of fluid elements are stochastic ??









VARIATIONAL PRINCIPLE WITH NOISES?

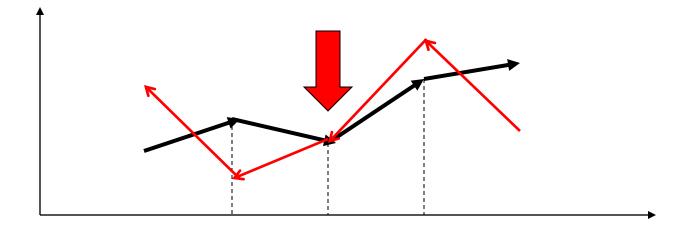
Generalize variables into the domain of stochastic variables

$$I = \left\langle \int_{a}^{b} dt L(X, DX) \right\rangle$$

We are talking necessarily the ensemble of trajectories

Yasue, J. Funct. Anal, 41, 327 ('81), Guerra&Morato, Phys. Rev. D27, 1774 ('83), Nelson, "Quantum Fluctuations" ('85).

THERE ARE TWO VELOCITIES AT A POINT



$$\vec{v} = \lim_{dt \to 0+} \frac{\vec{r}(\vec{R}, t + dt) - \vec{r}(\vec{R}, t)}{dt}$$

Forward SDE

$$\vec{\tilde{v}} = \lim_{dt \to 0+} \frac{\vec{r}(\vec{R}, t) - \vec{r}(\vec{R}, t - dt)}{dt}$$

Backward SDE

FOKKER-PLANK EQUATION FOR A GIVEN STOCHASTIC MOTION

We define the probability density function as

$$\rho(\vec{x},t) = \left\langle \delta(\vec{x} - \vec{x}(t)) \right\rangle$$

Average over all solutions SDE for a given initial condition.

One Solution of the SDE

FOKKER-PLANK EQUATION FOR A GIVEN STOCHASTIC MOTION

We define the probability density function as

$$\rho(\vec{x},t) = \left\langle \delta(\vec{x} - \vec{x}(t)) \right\rangle$$

Average over all solutions SDE for a given initial condition.

One Solution of the SDE

 $\rho(\vec{x},t+dt) - \rho(\vec{x},t) = -\vec{u}(\vec{x}(t),t)\nabla\left\langle\delta(\vec{x}-\vec{x}(t))\right\rangle dt + \nu\Delta\left\langle\delta(\vec{x}-\vec{x}(t))\right\rangle dt$

We get the Fokker-Plank $\partial_t \rho(\vec{x},t) = -\nabla \left(\vec{u}(\vec{x},t) - \nu \nabla \right) \rho(\vec{x},t)$

CONSISTENCY CONDITION FOR THE STATISTICAL ENSEMBLE

Fokker-Plank equation (Forward)

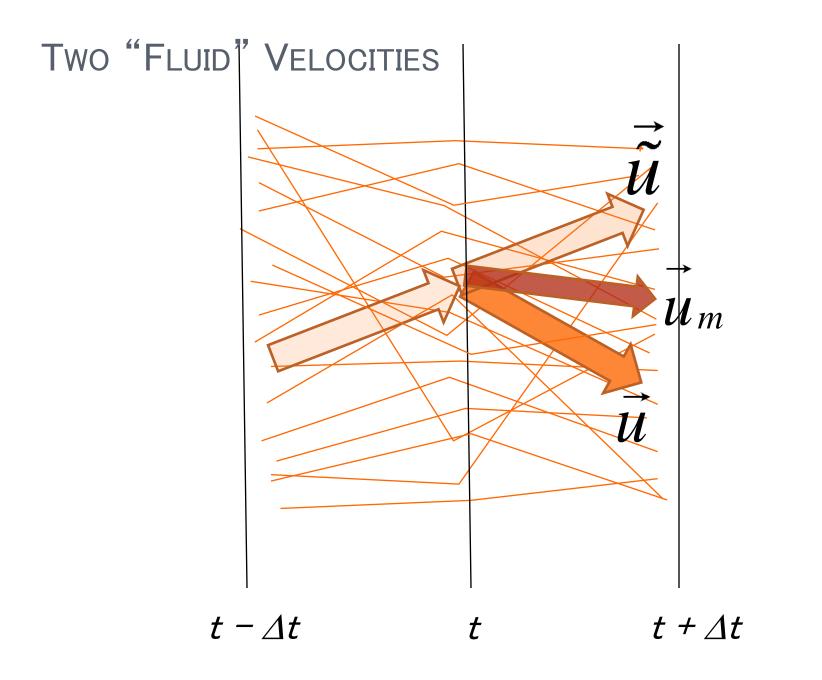
$$\partial_t \rho = -\nabla (\vec{u} - \nu \nabla) \rho$$

Fokker-Plank equation (Backward)

$$\partial_t \rho = -\nabla \left(\vec{\tilde{u}} + v \nabla \right) \rho$$

The two equation must be equivalent.

$$\vec{\tilde{u}} = \vec{u} + 2\nu \nabla \ln \rho$$



WHAT MAKES DIFFERENCE IN VARIATIONAL METHOD WHEN VARIABLES ARE STOCHASTIC?

WHAT MAKES DIFFERENCE IN VARIATIONAL METHOD WHEN VARIABLES ARE STOCHASTIC? PARTIAL INTEGRATION FORMULA !

Because of the two definitions of velocities, we introduce two different time derivative operators

Mean forward derivative

$$D\vec{r} = \vec{u}$$

Mean backward derivative

$$\tilde{D}\vec{r} = \vec{\tilde{u}}$$

stochastic partial integration formula

$$\int_{a}^{b} dt \left\langle (DX) \cdot Y \right\rangle$$
$$= \left\langle X(b)Y(b) - X(a)Y(a) \right\rangle - \int_{a}^{b} dt \left\langle X \cdot (\tilde{D}Y) \right\rangle$$

EXMAMPLE: SINGLE PARTICLE ACTION

Classical Action
$$I_{cla} = \int_{a}^{b} dt \left(\frac{m}{2}\left(\frac{d\vec{r}(t)}{dt}\right)^{2} - V(\vec{r}(t))\right)$$

$$\left(\frac{d\vec{r}}{dt}\right)^2 \Rightarrow \begin{cases} 1) \quad D\vec{r} \cdot D\vec{r} \\ 2) \quad \tilde{D}\vec{r} \cdot \tilde{D}\vec{r} \\ 3) \quad \frac{D\vec{r} \cdot D\vec{r} + \tilde{D}\vec{r} \cdot \tilde{D}\vec{r}}{2} \end{cases}$$

Take the case 3 (time reversal symmetry)

$$I_{sto} = \int_{a}^{b} dt \left\langle \frac{m}{2} \frac{(D\vec{r})^{2} + (\tilde{D}\vec{r})^{2}}{2} - V(\vec{r}) \right\rangle$$
⁸⁵

VARIATIONAL PRCEDURE

$$r \rightarrow r + \delta r$$

$$\delta \int_{a}^{b} dt \frac{m}{2} \langle (D\vec{r}) \cdot (D\vec{r}) \rangle = m \int_{a}^{b} dt \langle (D\vec{r}) \cdot (D\delta\vec{r}) \rangle$$
$$= m \int_{a}^{b} dt \langle \vec{u} \cdot (D\delta\vec{r}) \rangle$$
$$= -m \int_{a}^{b} dt \langle \tilde{D}\vec{u} \cdot \delta\vec{r} \rangle$$

From Ito formula, $\tilde{D}\vec{u} = \left(\partial_t + \vec{\tilde{u}} \cdot \nabla - \nu\Delta\right)\vec{u}$

SINGLE PARTICLE CASE

$$\delta I = 0 \quad \text{leads to} \\ \left(\partial_t + \vec{\tilde{u}} \cdot \nabla - \nu \Delta\right) \vec{u} + \left(\partial_t + \vec{u} \cdot \nabla + \nu \Delta\right) \vec{\tilde{u}} = -\frac{2}{m} \nabla V$$

Note that when v=0 (no noise), we have $\vec{u}=\tilde{u}$ and $\hat{\partial}_t + \vec{u} \cdot \nabla = d/dt$ $\longrightarrow \frac{d\vec{u}}{dt} = -\frac{1}{2}\nabla V$ dt m $\vec{u}_m = (\vec{u} + \vec{\tilde{u}})/2$ and Instead of two velocities, use $\partial_t \rho + \nabla \cdot (\rho u_m) = 0$, we get Euler – like equation $\left(\partial_t + \vec{u}_m \cdot \nabla\right) \vec{u}_m - 2\nu^2 \nabla \left(\rho^{-1/2} \nabla^2 \sqrt{\rho}\right) = -\frac{1}{m} \nabla V$

A closed set of equations

$$\partial_{t} \rho + \nabla \cdot \left(\rho \vec{u}_{m} \right) = 0,$$

$$\left(\partial_{t} + \vec{u}_{m} \cdot \nabla \right) \vec{u}_{m} - 2\nu^{2} \nabla \left(\rho^{-1/2} \nabla^{2} \sqrt{\rho} \right) = -\frac{1}{m} \nabla V$$

An interesting representation: Suppose the velocity field is irrotational. Then we can introduce a scalar function \mathcal{G} such that

 $\nabla \mathcal{G} = \vec{u}_m / (2\nu)$ (Velocoty potential)

$$\longrightarrow \nabla \left[\partial_t \vartheta + \nu \left(\nabla \vartheta \right)^2 - \nu \left(\rho^{-1/2} \nabla^2 \sqrt{\rho} \right) + \frac{1}{m} \nabla V \right] = 0$$

The Fokker–Planck equation

$$\partial_{t}\rho + \nabla \cdot \left(\rho \vec{u}_{m}\right) = 0,$$

$$\left(\partial_{t} + \vec{u}_{m} \cdot \nabla\right) \vec{u}_{m} - 2\nu^{2} \nabla \left(\rho^{-1/2} \nabla^{2} \sqrt{\rho}\right) = -\frac{1}{m} \nabla V$$

$$\nabla \vartheta = \vec{u}_{m} / (2\nu)$$

$$\partial_{t}\rho + 2\nu \nabla \cdot \left(\rho \nabla \vartheta\right) = 0,$$

$$\nabla \left[\partial_{t}\vartheta + \nu \left(\nabla \vartheta\right)^{2} - \nu \left(\rho^{-1/2} \nabla^{2} \sqrt{\rho}\right) + \frac{1}{m} \nabla V\right] = 0$$

These two equations are equivalent to a complex equation,

$$i\partial_t \varphi = \left[-v \nabla^2 + \frac{1}{2vm} V \right] \varphi,$$
 with $\varphi \equiv \sqrt{\rho} e^{i\vartheta},$

The Fokker-Planck equation

$$\partial_{t}\rho + \nabla \cdot \left(\rho u_{m}\right) = 0,$$

$$\left(\partial_{t} + u_{m} \cdot \nabla\right) u_{m} - 2v^{2} \nabla \left(\rho^{-1/2} \nabla^{2} \sqrt{\rho}\right) = -\frac{1}{m} \nabla V$$

$$\nabla \vartheta = u_{m} / (2v)$$

$$\partial_{t}\rho + 2v \nabla \cdot \left(\rho \nabla \vartheta\right) = 0,$$

$$\nabla \left[\partial_{t}\vartheta + v \left(\nabla \vartheta\right)^{2} - v \left(\rho^{-1/2} \nabla^{2} \sqrt{\rho}\right) + \frac{1}{m} \nabla V\right] = 0$$

That is, this is equivalent to Schrödinger Equation

$$i\hbar\partial_t \varphi = \left[-\frac{\hbar^2}{2m}\nabla^2 + V\right]\varphi, \qquad \varphi \equiv \sqrt{\rho}e^{i\vartheta}, \quad v = \hbar/2m.$$

In resume,

Classical Action

$$I_{cla} = \int_{a}^{b} dt \left(\frac{m}{2} \left(\frac{d\vec{r}(t)}{dt}\right)^{2} - V(\vec{r}(t))\right)$$

Stochastic Action

$$I_{sto} = \int_{a}^{b} dt \left\langle \frac{m}{2} \frac{(D\vec{r})^{2} + (\tilde{D}\vec{r})^{2}}{2} - V(\vec{r}) \right\rangle$$

Γ

i.9

The corresponding Fokker-Planck equation

$$\partial_t \rho + \nabla \cdot \left(\vec{\rho u_m} \right) = 0, \left(\partial_t + \vec{u}_m \cdot \nabla \right) \vec{u}_m - 2\nu^2 \nabla \left(\rho^{-1/2} \nabla^2 \sqrt{\rho} \right) = -\frac{1}{m} \nabla V$$

Schrödinger Equation

$$i\hbar\partial_t \varphi = \begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V \end{bmatrix} \varphi, \qquad \begin{array}{l} \varphi \equiv \sqrt{\rho} e^{i\sigma}, \\ \vec{u} = 2v\nabla \vartheta, \\ v = \hbar/2m. \end{array}$$

 $I_{Traditional} \to I_{Stochastic} = \left\langle \int_{a}^{b} dt \int d^{3}R \left(\frac{\rho_{0}}{2} D\vec{r} \cdot D\vec{r} - \frac{\rho_{0}}{\rho} \varepsilon(\rho, S) \right) \right\rangle$

T. Koide and T. K, .J. PhysA: 45(25):255204

$$I_{Traditional} \to I_{Stochastic} = \left\langle \int_{a}^{b} dt \int d^{3}R \left(\frac{\rho_{0}}{2} D\vec{r} \cdot D\vec{r} - \frac{\rho_{0}}{\rho} \varepsilon(\rho, S) \right) \right\rangle$$

94

T. Koide and T. K, .J. PhysA: 45(25):255204

$$\rho \left(\partial_t + \vec{v}_m \cdot \nabla\right) \vec{v}_m + \sum_j \partial_j \left[\left(P - \varsigma \nabla \cdot \vec{v}_m \right) \delta_{ij} - \eta e_{ij}^m \right] - \sum_j \partial_j \left(\eta \partial_j \frac{\eta}{\rho} \nabla \ln \rho \right) = 0, e_{ij}^m = \partial_j v_m^i + \partial_i v_m^j - \frac{2}{3} (\nabla \cdot \vec{v}_m) \delta_{ij}$$

T. Koide and T. K, .J. PhysA: 45(25):255204

$$\rho \left(\partial_t + \vec{v}_m \cdot \nabla\right) \vec{v}_m + \sum_j \partial_j \left[\left(P - \varsigma \nabla \cdot \vec{v}_m \right) \delta_{ij} - \eta e_{ij}^m \right] \\ - \sum_j \partial_j \left(\eta \partial_j \frac{\eta}{\rho} \nabla \ln \rho \right) = 0, \\ e_{ij}^m = \partial_j v_m^i + \partial_i v_m^j - \frac{2}{3} (\nabla \cdot \vec{v}_m) \delta_{ij}$$
With a surface tension correction

T. Koide and T. K, .J. PhysA: 45(25):255204

GROSS-PITAEVSKII EQUATION

$$I_{\text{Stochastic}} = \left\langle \int_{a}^{b} dt \int d^{3}R \left(\frac{\rho_{0}}{2} \frac{D\vec{r} \cdot D\vec{r} + \tilde{D}\vec{r} \cdot \tilde{D}\vec{r}}{2} - \frac{\rho_{0}}{\rho} \varepsilon(\rho) \right) \right\rangle$$

with
$$\varepsilon = \frac{1}{m}V(r)\rho + \frac{1}{2m^2}U_0\rho^2$$
, $\psi \equiv \sqrt{\rho}e^{i\vartheta}$,
 $\vec{u} = 2\sqrt{\nabla}\mathcal{G}$,
 $v = \hbar/2m$.

$$i\hbar\partial_t\psi = \left[-\frac{\hbar^2}{m}\nabla^2\psi + V + U_0\left|\psi\right|^2\right]\psi,$$

ANOTHER INTERESTING EAMPLE

Classical damped motion

$$I_{Classic} = \int_{a}^{b} dt \left[\frac{m}{2} \left(\frac{dx}{dt} \right)^{2} - V(x) \right] e^{\lambda t}.$$

$$i\hbar \partial_{t} \psi = \left[-\frac{\hbar^{2}}{m} \nabla^{2} \psi + V + i \frac{\hbar}{2} \gamma \left(\delta \ln \frac{\psi^{*}}{\psi} \right) \right] \psi,$$

$$\delta \ln \frac{\psi^{*}}{\psi} \equiv \ln \frac{\psi^{*}}{\psi} - \left\langle \ln \frac{\psi^{*}}{\psi} \right\rangle$$

Optical-potential-like equation, known as Kostin Equation

SUMMARY

- It is important to know what is the "Thermalization" scale realized in heavy ion collisions. Depends on what we observe.
- Transport coefficients, or even effective EoS may depend on this scale.
- Some observables are not sensitive to this scale. If we can see only these, we would think really the hydro works well …

OUTLOOK

- Can the difference of identified particle flow pattern see this ?
- Variational approach with noises for Relativistic fluid.
- Use of transport code (PHSD*, UrQMD) and construct Hydro introducing coarse graining and see the effects....

* Elena Bratkovskaya' s talk.

OUTLOOK

- Can the difference of identified particle flow pattern see this ?
- Variational approach with noises for Relativistic fluid.
- Use of transport code (PHSD*, UrQMD) and construct Hydro introducing coarse graining and see the effects…
 - * Elena Bratkovskaya' s talk.

