
  Role of fluctuations in detecting  QCD phase transition         

 Fluctuations of the Polyakov loop 

and deconfinement  in a pure SU(N) 

gauge theory and  in QCD 

 Fluctuations of  conserved charges 

as probe for  the chiral phase 

transition and deconfinement 

 Probability distribution and O(4) 

criticality 

              theoretical expectation and   

               STAR data 
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   Susceptibilities of net charge and order parameters  

– The generalized susceptibilities probing fluctuations of  net -charge   

   number  in a system and its critical properties   

    
pressure: 

particle number density          quark number susceptibility          4th order cumulant 

 generalized 
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Polyakov loop on the lattice needs renormalization 

 Introduce  Polyakov loop: 

 

 

 

 Renormalized ultraviolet  

   divergence 

 

 Usually one takes  

    as an order parameter 
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To probe deconfinement :  consider  fluctuations                                  

 Fluctuations of modulus of  

    the Polyakov loop  

 

 

However,  the Polyakov loop    

        
Thus, one can  consider fluctuations  of 

the real       and the imaginary 

part       of the Polyakov loop.  

 

SU(3) pure gauge:  LGT data  
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 Fluctuations of the  real and imaginary part of the 
                  renormalized Polyakov loop 

 Imaginary part fluctuations   Real  part fluctuations 

Pok Man Lo, B. Friman, O. Kaczmarek, C. Sasaki & K.R.  



Ratios of  the Polyakov loop fluctuations as  an  
                                         excellent probe for deconfinement 

 In the deconfined phase 

    Indeed, in the real sector of Z(3) 

 

 

     

 

 

 

 

 

 

 

 

 

      

 

 

 

Expand modulus  

 

 

 

 

and find:   
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Ratios of  the Polyakov loop fluctuations as  an  
                                         excellent probe for deconfinement 

 In the confined  phase 

    Indeed, in the  Z(3) symmetric  phase,   

      the probability distribution is to a first      

      approximation Gaussian with the   

      partition function   

 

 

 

                                    consequently 

 

 

      

 

 

 

 

 

 

 

      

 

 

 

Expand modulus  

 

 

 

 

and find:   

   Pok Man Lo, B. Friman, O. Kaczmarek, 

   C. Sasaki & K.R. , PRD (2013) 0.43AR 

In the SU(2) case 

 is in agreement with MC results                     
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Ratio Imaginary/Real of Polyakov loop fluctuations 

 In the confined phase for 

any symmetry breaking 

operator its average 

vanishes, thus 

                                     and  

                          thus 
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 In the deconfined phase 

the ratio of                     

and its value is model 

dependent  
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The influence of fermions on  ratios of  the   
           Polyakov loop susceptibilities  

 Z(3) symmetry broken, however 

    ratios still showing  the transition  

 Change of the slopes at 

fixed T  

   Pok Man Lo, B. Friman, O. Kaczmarek, C. Sasaki & K.R.  
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Probing deconfinement in QCD  

 Kurtosis measures the 

    squared of the baryon   

    number carried by leading  

     particles in a medium    
               S. Ejiri, F. Karsch & K.R. (06)  
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Pok Man Lo, B. Friman, (013) 

O. Kaczmarek, C. Sasaki & K.R. 

S. Ejiri, F. Karsch & K.R. (06)  

316 4 lattice with p4 fermion action 
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 HRG factorization of pressure: 
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Probing deconfinement in QCD  

 

 

 

 

 The change of the slope of 

the ratio of the Polyakov 

loop susceptibilities 

appears  at the same T 

where the kurtosis drops 

from its HRG asymptotic 

value  

  In the presence of quarks   

     there is “remnant” of Z(N)  

     symmetry in the             

     ratio, indicating  deconfi- 

      nement of quarks               
                

Pok Man Lo, B. Friman, (013) 
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316 4 lattice with p4 fermion action 
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Probing deconfinement in QCD  

 

 

 

 

 The change of the slope of 

the ratio of the Polyakov 

loop susceptibilities 

appears  at the same T 

where the kurtosis drops 

from its HRG asymptotic 

value  

  In the presence of quarks   

     there is “remnant” of Z(N)  

     symmetry in the             

     ratio, indicating  deconfi- 

      nement of quarks               
                

Pok Man Lo, B. Friman, O. Kaczmarek, C. Sasaki & K.R. 

S. Ejiri, F. Karsch & K.R. (06)  
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Remnant of the O(4) chiral phase transtion in QCD   

CP 
Asakawa-Yazaki 

Stephanov et al., Hatta & Ikeda 

At the CP:  

Divergence of Fluctuations, Correlation length 

and specific heat  

Critical 

region 

Phys. Rev. D83, 014504 (2011) 

Phys. Rev. D80, 094505 (2009) 

 

 BNL-Bielefeld group 

Pisarki & Wilczek conjecture  

Fig. from Ch. Schmidt  

 

 The QCD 

crossover line can 

appear in the O(4) 

critical region! 

    This has been indeed   

     shown   in   LQCD     

      calculations by: 



 Chemical freezeout and the QCD chiral crossover 

A. Andronic et al., Nucl.Phys.A837:65-86,2010.  O(4) universality  
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HRG model 

Chiral  

/ ( )T f s   Is there a memory that the 

system has passed through 

a region of QCD O(4)-chiral  

crossover transition?  

       

Chiral crossover  Temperature from LGT 

 

             HotQCD Coll.  (QM’12)                                                                       
154 9 MeVcT  

Chemical Freezeout LHC (ALICE) 

                                                            

 see talk of J. Stachel 
156 2 MeVfT  

LHC J. Stachel et. al.  

LHC 

HotQCD Collaboration 
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 Due to the expected  O(4) scaling in QCD the free energy:  

 

 

 Consider generalized susceptibilities of net-quark number  

 

 

 Since for            ,          are well described by the   

             search for deviations (in particular for larger n) from HRG    

            to quantify the  contributions of       , i.e.  the O(4) criticality 
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 Quark fluctuations and O(4) universality class  
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  M. Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103 (2009) 262301  
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                  Effective chiral models     
           Renormalisation Group Approach   

 coupling with meson fileds                    PQM chiral model 

 

 FRG thermodynamics  of PQM model:  

    

 Nambu-Jona-Lasinio model            PNJL chiral model      
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         the  SU(2)xSU(2)         invariant quark interactions described   

           through: 

K. Fukushima;  C. Ratti & W. Weise;  B. Friman ,  C. Sasaki .,  …. 

B.-J. Schaefer, J.M. Pawlowski & J. Wambach; B. Friman, V.  Skokov, ...  

int ( , )V q q 

*( , )U L L 
      the              -  invariant Polyakov loop  potential 
     (Get potential from YM theory, C. Sasaki &K.R.  Phys.Rev. D86, (2012); 

        Parametrized LGT data:  Pok Man Lo, B. Friman, O. Kaczmarek &K.R.)   
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 B. Friman, V.  Skokov,  B. Stokic & K.R.    

 

fields  



 Deviations  from  low -T  HRG  values  are increasing with             

and the cumulant order .  Negative fluctuations near the chiral 

crossover.   

/T

Ratios of cumulants at finite density in   PQM  model with FRG   

B. Friman, F. Karsch, V. Skokov &K.R.  

Eur.Phys.J. C71 (2011) 1694 

HRG value 

      B. Friman, V. Skokov &K.R. 
            Phys.Rev. C83 (2011) 054904 

HRG value 
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STAR data on the first four moments of net baryon number 

Deviations from the HRG 

 

 

 

 

 

Data qualitatively consistent 

with the  change of these 

ratios   due to the 

contribution of the O(4) 

singular part  to the  free 

energy  
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Kurtosis saturates near the O(4) phase boundary 

 The energy dependence of measured kurtosis consistent 

with expectations due to contribution of the O(4) criticality. 

Can that be also seen in the higher moments?    

B. Friman, et al. EPJC 71, (2011) 

                               



         STAR DATA Presented at QM’12 

            

Lizhu Chen for STAR Coll. 

             V. Skokov, B. Friman & K.R., F. Karsch et al.  

The HRG reference predicts:   

6 2/c c

  
  

  
  
 

HRG 

6 2/ 1c c 
O(4) singular part contribution:  

strong deviations from HRG: negative 

structure already at vanishing baryon 

density   



Moments obtained from probability 
distributions 

 Moments obtained from probability 

distribution  

 

 Probability quantified by all  cumulants 

 

 

 

 In statistical physics 
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What is the influence of O(4) criticality on P(N)? 

 For the net baryon number use the 

Skellam distribution (HRG baseline) 

 

 

   as the reference for the non-critical   

    behavior 

 Calculate P(N) in an effective chiral 

model which exhibits O(4) scaling and 

compare to Skellam distribtuion 
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 Take the ratio of           which contains O(4) dynamics to Skellam 

distribution with the same Mean and Variance at different   / pcT T

( )FRGP N

 Ratios less than unity 

near the chiral 

crossover,  indicating 

the contribution  of  

the O(4) criticality to 

the thermodynamic 

pressure  

 

0 

K. Morita, B. Friman &K.R. (PQM model) 

The influence of O(4) criticality on  P(N) for   0 



 Take the ratio of           which contains O(4) dynamics to Skellam 

distribution with the same Mean and Variance at different   / pcT T

( )FRGP N

0 

K. Morita, B. Friman et al. 

The influence of O(4) criticality on  P(N) for   0 

Ratio < 1 at larger |N|   

 if  c6/c2 < 1 



The influence of O(4) criticality on  P(N) for   

 Take the ratio of           which contains O(4) dynamics to Skellam 

distribution with the same Mean and Variance near   ( )pcT 
( )FRGP N

 Asymmetric P(N) 

 Near            the ratios less 

than unity for 

 For sufficiently large      

the  

     for  
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K. Morita, B. Friman et al. 
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  Probability distribution of net proton number  
                   STAR Coll. data at RHIC 

STAR data  

Do we also see  the O(4) critical structure in these probability distributions ? 

Thanks to Nu Xu and Xiofeng Luo 



The influence of O(4) criticality on  P(N) for   

0 

K. Morita, B. Friman & K.R.  

0 

 In central collisions the probability behaves as being 

influenced by the chiral transition   

For preliminary STAR data 

QM 2012 



Energy dependence for different centralities 

 Ratios at central collisions show properties expected 

near the O(4) chiral pseudocritical line 

  For less central collisions the critical structure is lost  



Conclusions: 

 Ratios of the Polyakov loop and the net charge susceptibilities are 

excellent  probes of deconfinement  and/or  the  O(4) chiral  

crossover transition  in QCD   

 Systematics  of  the net-proton  fluctuations and their probability 

distributions  measured by  STAR are   qualitatively  consistent with  

the   expectations  that they are  influenced  by the O(4) criticality.    

However, other effects could  possibly also influence  data:  

 Exact charge conservation   (Koch, Bzdak, Skokov) 

 Acceptance corrections       (Bzdak & Koch) 

 Effects of final state interactions (Ono, Asakawa & Kitazawa) 

 Non-equilibrium effects  (Kitazawa, Asakawa & Ono)  

 Volume fluctuations  ( Friman, Skokov & K.R.) 

 Etc.             

        

 



Centrality dependence of probability ratio 

O(4) critical  

Non- critical 

behavior  

 For less central collisions, the freezeout appears away 

the pseudocritical line, resulting in an absence  of the 

O(4) critical structure  in the probability ratio.   

STAR analysis of freezeout K. Morita et al.  

Cleymans & Redlich 

Andronic, Braun- 

Munzinger & Stachel 


