Hadronic effects on the hadron abundances in heavy ion collisions

Strangeness in Quark Matter 2013 July 26th 2013

Sungtae Cho and Su Houng Lee

BIRMINGHAM

Institute of Physics and Applied Physics Yonsei University

- Introduction
- Hadronic interactions
- The X(3872) meson
- The K* meson
- Conclusions

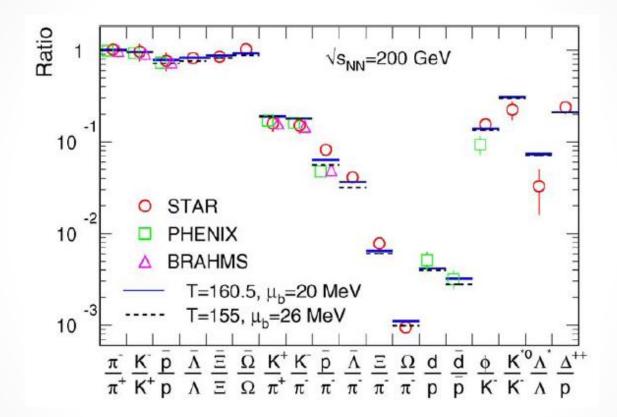
YONSEI UNIVERSITY

Introduction

- Statistical model

P. Braun-Munzinger, J. Stachel, J. P. Wessels, N. Xu, Phys. Lett. **B344**, 43 (1995) P. Braun-Munzinger, J. Stachel, J. P. Wessels, N. Xu, Phys. Lett. **B365**, 1 (1996)

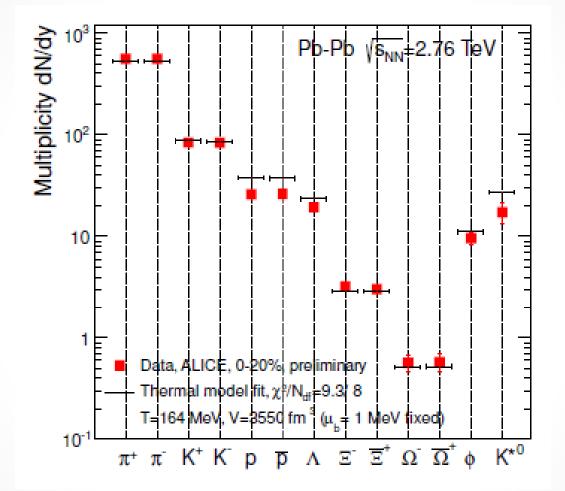
 In a chemically and thermally equilibrated system of noninteracting hadrons and resonances, the particle production yield is given by


$$N_{i} = V_{H} \frac{g_{i}}{2\pi^{2}} \frac{1}{N_{BW}} \int_{M_{0}}^{\infty} dm \int_{0}^{\infty} \frac{\Gamma_{i}^{2}}{(m - m_{i})^{2} + \Gamma_{i}^{2} / 4} \frac{p^{2} dp}{\gamma_{i}^{-1} e^{E_{i} / T_{H}} \pm 1}$$
$$E_{i} = \sqrt{m_{i}^{2} + p_{i}^{2}} \quad \gamma = \gamma_{c}^{n_{c} + n_{\overline{c}}} e^{\left[\mu_{B} n_{B} + \mu_{s} n_{s}\right]}$$

2) The hadronization temperature and the chemical potential are determined from the experimental data

The University of Birhmingham

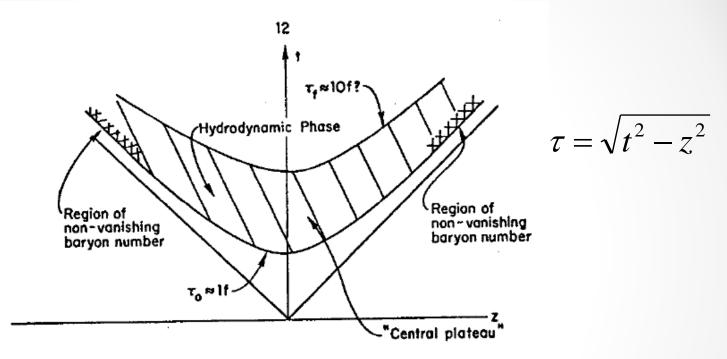
3) Particle yields ratio at RHIC



P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. **B518**, 42 (2001) A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A **772**, 167 (2006)

• Strangeness in Quark Matter 2013 The University of Birhmingham

4) Particle yields ratio at LHC



A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Nucl. Phys. A 904 535c (2013)

• Strangeness in Quark Matter 2013 The University of Birhmingham

- Time evolution of quark-gluon plasma

J. D. Bjorken, Phys. Rev. D 27, 140 (1983)

i. Collision

ii. Pre-equilibrium state and Quark-gluon plasma

- iii. Hydrodynamic expansion
- iv. Chemical freeze-out

v. Kinetic freeze-out

• Strangeness in Quark Matter 2013 The University of Birhmingham

Hadronic interactions

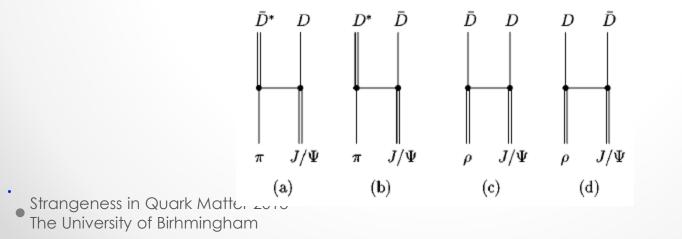
- J/ψ suppression and Debye screening

T. Matsui and H. Satz, Phys. Lett. **B178** 416 (1986)

1) At $T > T_c$ color charges are Debye screened in QGP Compared to the Bohr radius r_B , the Debye screening prevents the formation of the bound states when $r_B > \lambda_D$ $\lambda_D = \frac{1}{gT\sqrt{\frac{N_c}{2} + \frac{N_f}{c}}}$

2) Possibilities of J/ψ absorption by hadronic interactions

- Hadronic interactions



1) A perturbative approach at the quark level

D. Kharzeev and H. Satz, Phys. Lett. B 334, 155 (1994)

2) A meson exchange model with an effective Lagrangian

Sergei G. Matinyan and Berndt Muller, Phys. Rev. C 58, 2994 (1998)
Kelvin L. Haglin, Phys. Rev. C 61, 031902(R) (2000)
Ziwei Lin and C. M. Ko, Phys. Rev. C 62, 034903 (2000)
Yongseok Oh, Taesoo Song, and Su Houng Lee, Phys. Rev. C 63, 034901 (2000)
L. W. Chen, C. M. Ko, W. Liu, and M. Nielsen, Phys. Rev. C 76, 014906 (2007)

The X(3872) meson

- X(3872) mesons

J. Beringer et al. (PDG), Phys. Rev. D86, 010001 (2012)

Only $J^{PC} = 1^{++}, 2^{-+}$ states are allowed :

A. Abulencia et al, [CDF Collaboration], Phys. Rev. Lett. 98, 132002 (2007)

1) Expected production yields of X(3872) mesons

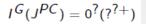
Coal.(2q)

 1.7×10^{-4}

S. Cho et al. [ExHIC Collaboration], Phys. Rev. Lett. **106**, 212001 (2011) S. Cho et al. [ExHIC Collaboration], Phys. Rev. C **84**, 064910 (2011)

Strangeness in Quark Matter 2013	
The University of Birhmingham	

X(3872)


spin-1

spin-2

Coal.(4q)

 4.0×10^{-5}

Quantum numbers not established.

Stat.

 2.9×10^{-4}

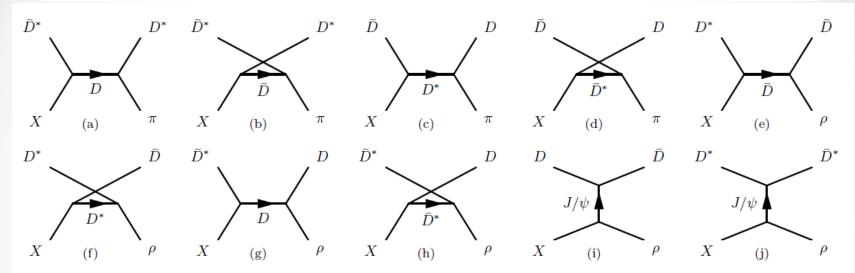
 4.8×10^{-4}

 $\begin{array}{l} {\sf Mass} \ m = 3871.68 \pm 0.17 \ {\sf MeV} \\ m_{X(3872)} \ - \ m_{J/\psi} = 775 \pm 4 \ {\sf MeV} \\ m_{X(3872)} \ - \ m_{\psi(2S)} \\ {\sf Full \ width} \ \Gamma \ < \ 1.2 \ {\sf MeV}, \ {\sf CL} = 90\% \end{array}$

2) Interaction Lagrangians from the pseudoscalar and vector **YONSE** mesons free Lagrangians

$$\mathcal{L}_0 = \mathrm{Tr}(\partial_{\mu} P^{\dagger} \partial^{\mu} P) - \frac{1}{2} \mathrm{Tr}(F^{\dagger}_{\mu\nu} F^{\mu\nu}),$$

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta_{c}}{\sqrt{12}} & \pi^{+} & K^{+} & D^{0} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} + \frac{\eta_{c}}{\sqrt{12}} & K^{0} & D^{-} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta + \frac{\eta_{c}}{\sqrt{12}} & D^{-}_{s} \\ D^{0} & D^{+} & D^{+}_{s} & -\frac{3\eta_{c}}{\sqrt{12}} \end{pmatrix} \\ V = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega'}{\sqrt{6}} + \frac{J/\psi}{\sqrt{12}} & \rho^{+} & K^{*+} & D^{*0-} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega'}{\sqrt{6}} + \frac{J/\psi}{\sqrt{12}} & K^{*0} & D^{*-} \\ K^{*-} & K^{*0} & -\sqrt{\frac{2}{3}}\omega' + \frac{J/\psi}{\sqrt{12}} & D^{*-}_{s} \\ D^{*0} & D^{+} & D^{+}_{s} & -\frac{3\eta_{c}}{\sqrt{12}} \end{pmatrix}$$


$$\begin{split} \mathcal{L}_{\pi DD^*} &= ig_{\pi DD^*} D^{*\mu} \vec{\tau} \cdot (\overline{D} \partial_{\mu} \vec{\pi} - \partial_{\mu} \overline{D} \vec{\pi}) + \text{H.c.}, \quad \mathcal{L}_{\rho DD} &= ig_{\rho DD} (D \vec{\tau} \partial_{\mu} \overline{D} - \partial_{\mu} D \vec{\tau} \overline{D}) \cdot \vec{\rho}^{\mu}, \\ \mathcal{L}_{\psi DD} &= ig_{\psi DD} \psi^{\mu} (D \partial_{\mu} \overline{D} - \partial_{\mu} D \overline{D}), \qquad \mathcal{L}_{\rho D^* D^*} &= ig_{\rho D^* D^*} [(\partial_{\mu} D^{*\nu} \vec{\tau} \overline{D}_{\nu}^* - D^{*\nu} \vec{\tau} \partial_{\mu} \overline{D}_{\nu}^*) \cdot \vec{\rho}^{\mu} \\ \mathcal{L}_{\psi D^* D^*} &= ig_{\psi D^* D^*} [\psi^{\mu} (\partial_{\mu} D^{*\nu} \overline{D}_{\nu}^* - D^{*\nu} \partial_{\mu} \overline{D}_{\nu}^*) \qquad + (D^{*\nu} \vec{\tau} \cdot \partial_{\mu} \vec{\rho}_{\nu} - \partial_{\mu} D^{*\nu} \vec{\tau} \cdot \vec{\rho}_{\nu}) \overline{D}^{*\mu} \\ &+ (\partial_{\mu} \psi^{\nu} D_{\nu}^* - \psi^{\nu} \partial_{\mu} D_{\nu}^*) \overline{D}^{*\mu} \qquad + D^{*\mu} (\vec{\tau} \cdot \vec{\rho}^{\nu} \partial_{\mu} \overline{D}_{\nu}^* - \vec{\tau} \cdot \partial_{\mu} \vec{\rho}^{\nu} \overline{D}_{\nu}^*)], \end{split}$$

• Strangeness in Quark Matter 2013 The University of Birhmingham

3) The absorption of X(3872) by pions and rho mesons

 $X\pi \to D^*\bar{D^*}, \ X\pi \to D\bar{D}, \ X\rho \to D\bar{D^*}, \ X\rho \to \bar{D}D^*, \ X\rho \to \bar{D}D, \ X\rho \to \bar{D^*}D^*$

4) Interaction Lagrangians for two kinds of X(3872) mesons

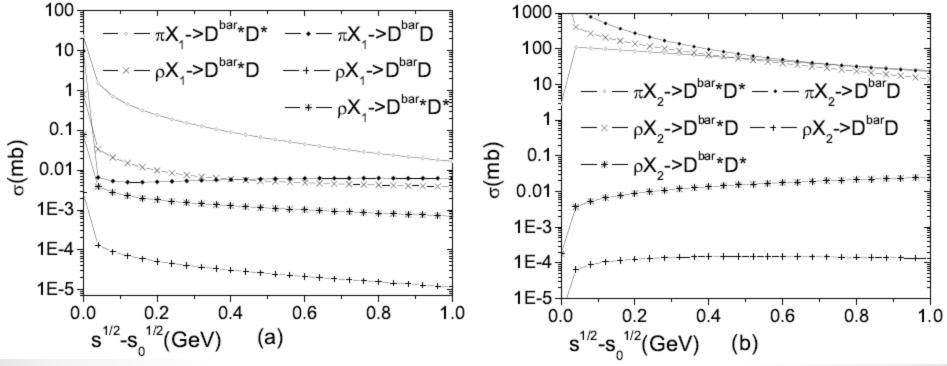
F. Brazzi, B. Grinstein, F. Piccinini, A. D. Polosa, and C. Sabelli, Phys. Rev. D 84, 014003 (2011)

$$\mathcal{L}_{X_1D^*D} = g_{X_1D*D}X_1^{\mu}\bar{D}_{\mu}^*D,$$

$$\mathcal{L}_{X_1\psi\rho} = ig_{X_1\psi\rho}\epsilon^{\mu\nu\rho\sigma}\psi_{\nu}\rho_{\rho}\partial_{\sigma}X_{1\mu},$$

$$\mathcal{L}_{X_2D^*D} = -ig_{X_2D^*D}X_2^{\mu\nu}\bar{D}_{\mu}^*\partial_{\nu}D,$$

$$\mathcal{L}_{X_2\psi\rho} = -g_{X_2\psi\rho}\epsilon^{\mu\nu\rho\sigma}X_{\mu\alpha}(\partial_{\nu}\psi^{\alpha}\partial_{\rho}\rho_{\sigma} - \partial_{\nu}\psi^{\alpha}\partial_{\rho}\rho_{\sigma})$$


$$+ g'_{X_2\psi\rho}\epsilon^{\mu\nu\rho\sigma}\partial_{\nu}X_{\mu\alpha}(\partial^{\alpha}\psi_{\rho}\rho_{\sigma} - \psi_{\rho}\partial^{\alpha}\rho_{\sigma}).$$
July 26th 2013

Strangeness in Quark Mo The University of Birhmingham

•11

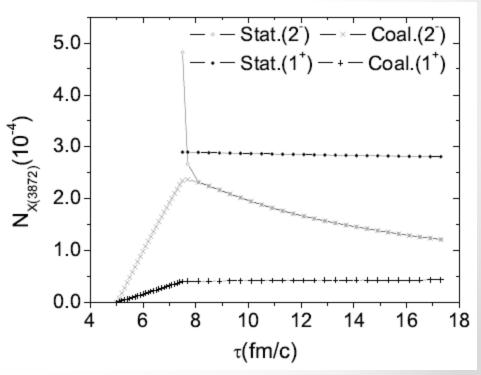
5) Cross sections for different X(3872) meson quantum number

Sungtae Cho and Su Houng Lee, arXiv:1302.6381

Thermally averaged cross sections

P. Koch, B. Muller, and J. Rafelski, Phys. Rept., 142, 167 (1986)

$$\left\langle \sigma_{ih \to jk} v_{ih} \right\rangle = \frac{\int d^3 p_i d^3 p_h f_i(p_i) f_j(p_j) \sigma_{ih \to jk} v_{ih}}{\int d^3 p_i d^3 p_h f_i(p_i) f_j(p_j)}$$


July 26th 2013 • 12

• Strangeness in Quark Matter 20 The University of Birhmingham

- Time evolution of the X(3872) meson yields $\frac{dN_X(\tau)}{d\tau} = R_{QGP}(\tau) + \sum_{a,c,c'} \left(\langle \sigma_{cc' \to aX} v_{cc'} \rangle n_c(\tau) N_{c'}(\tau) - \langle \sigma_{aX \to cc'} v_{aX} \rangle n_a N_X(\tau) \right)$

1) The yield of the X(3872) meson with spin 2 varies drastically and follows the statistical model predictions

- 2) The yield increases or remains almost unchanged in both the statistical model and coalescence model for the spin 1 state of X(3872)
- 3) Time evolution of the X(3872) meson abundance is strongly dependent also on its quantum number and its structure
 Strangeness in Quark Matter 2013 The University of Birhmingham

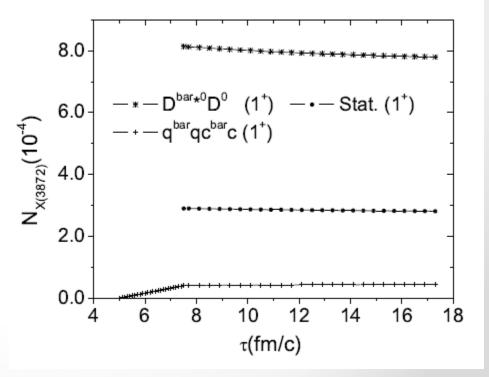
4) The spin of the X(3872) meson

PRL 110, 222001 (2013)

PHYSICAL REVIEW LETTERS

Determination of the X(3872) Meson Quantum Numbers

R. Aaij *et al.** (LHCb Collaboration) (Received 25 February 2013; published 29 May 2013)

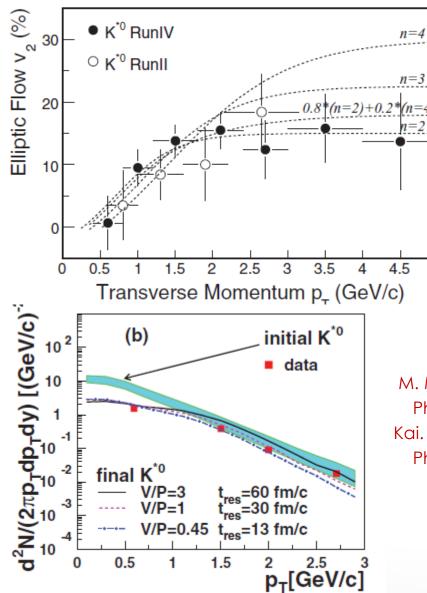

 $I^{G}(J^{PC}) = 0^{+}(1^{+})$

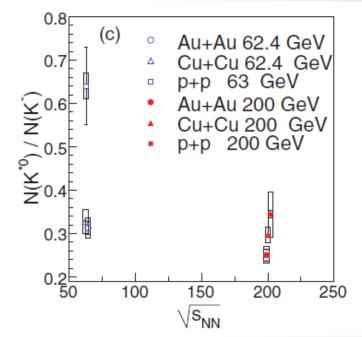
X(3872)

Mass $m = 3871.68 \pm 0.17$ MeV $m_{X(3872)} - m_{J/\psi} = 775 \pm 4$ MeV $m_{X(3872)} - m_{\psi(2S)}$ Full width $\Gamma < 1.2$ MeV, CL = 90%

5) Time evolutions of the spin-1 X(3872) meson abundance

• Strangeness in Quark Matter 2013 The University of Birhmingham




week ending 31 MAY 2013

The K* meson

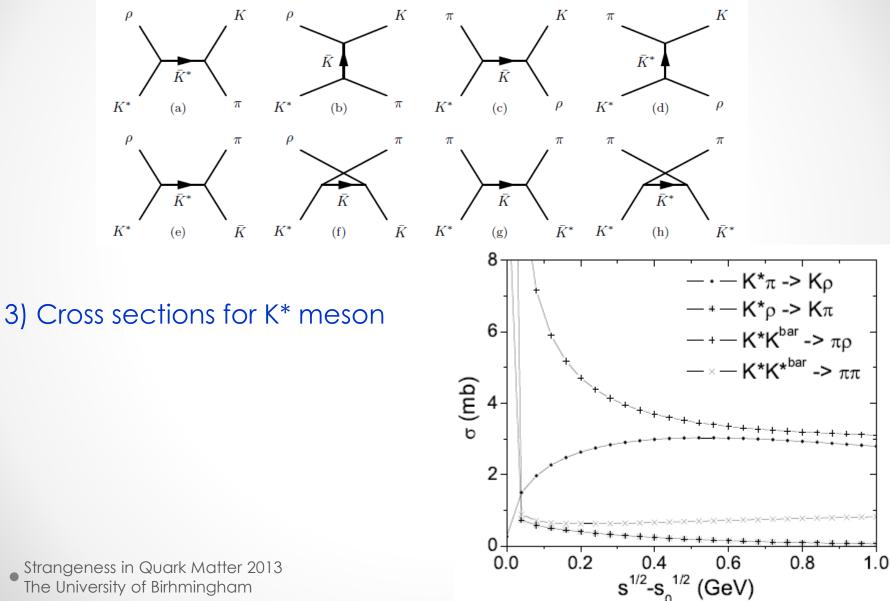
5

M. M. Aggarwal et al, [STAR Collaboration], Phys. Rev. C **84**, 034909 (2011) Kai. Zhang, Jun Song, and Feng-lan Shao, Phys. Rev. C **86**, 014906 (2012)

- Hadronic effects on the K* meson
- 1) The interaction Lagrangians from the pseudoscalar and vector mesons free Lagrangians

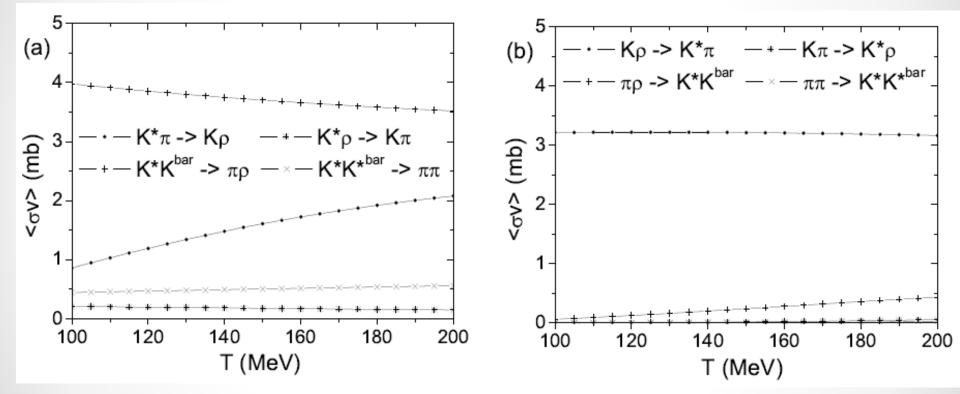
$$\mathcal{L}_{0} = \operatorname{Tr}(\partial_{\mu}P^{\dagger}\partial^{\mu}P) - \frac{1}{2}\operatorname{Tr}(F_{\mu\nu}^{\dagger}F^{\mu\nu}),$$

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & , \overline{K}^{*0} & \phi \end{pmatrix}$$


$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\sqrt{\frac{2}{3}}\eta_{8} + \frac{\eta_{1}}{\sqrt{3}} \end{pmatrix}$$

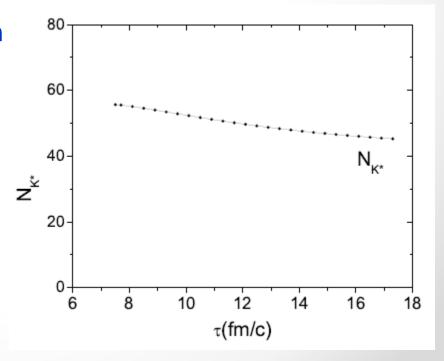
$$\begin{aligned} \mathcal{L}_{\pi K K^*} &= i g_{\pi K K^*} K^{*\mu} \vec{\tau} \cdot (\bar{K} \partial_\mu \vec{\pi} - \partial_\mu \bar{K} \vec{\pi}) + \text{H.c.}, \\ \mathcal{L}_{\rho K K} &= i g_{\rho K K} (K \vec{\tau} \partial_\mu \bar{K} - \partial_\mu K \vec{\tau} \bar{K}) \cdot \vec{\rho}^\mu, \\ \mathcal{L}_{\rho K^* K^*} &= i g_{\rho K^* K^*} \left[(\partial_\mu K^{*\nu} \vec{\tau} \bar{K}_{\nu}^* - K^{*\nu} \vec{\tau} \partial_\mu \bar{K}_{\nu}^*) \cdot \vec{\rho}^\mu \right. \\ &+ \left. (K^{*\nu} \vec{\tau} \cdot \partial_\mu \vec{\rho}_{\nu} - \partial_\mu K^{*\nu} \vec{\tau} \cdot \vec{\rho}_{\nu}) K^{\bar{*}\mu} \right. \\ &+ \left. K^{*\mu} (\vec{\tau} \cdot \vec{\rho}^{\nu} \partial_\mu \bar{K}_{\nu}^* - \vec{\tau} \cdot \partial_\mu \vec{\rho}^{\nu} \bar{K}_{\nu}^*) \right], \end{aligned}$$

• Strangeness in Quark The University of Birhnungnam


2) The absorption of K* mesons by pions, rho and K mesons

The University of Birhmingham

4) Thermally averaged cross sections



5) Time evolution of the K* meson abundances

$$\frac{dN_{K^*}(\tau)}{d\tau} = \sum_{a,b,c} \left(\langle \sigma_{ab \to cK^*} v_{ab} \rangle n_a(\tau) N_b(\tau) - \langle \sigma_{cK^* \to ab} v_{cK^*} \rangle n_c(\tau) N_{K^*}(\tau) \right)$$

The abundance of the K* meson decreases by about 20% during the hadronic stage of heavy ion collisions

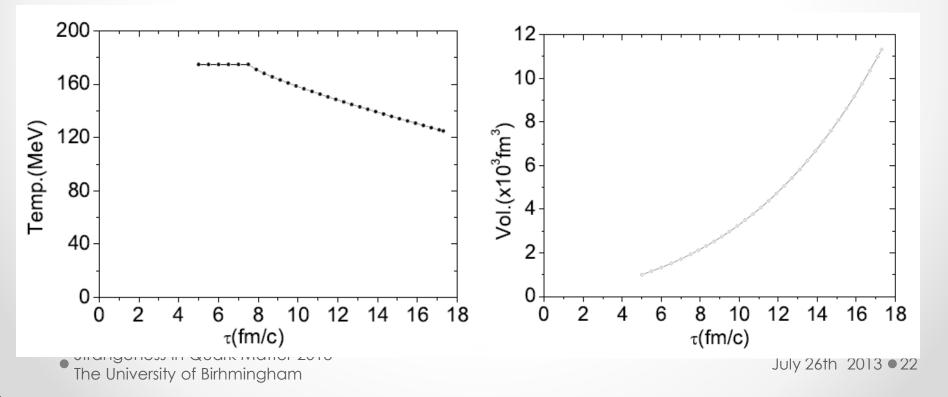
• Strangeness in Quark Matter 2013 The University of Birhmingham

Conclusions

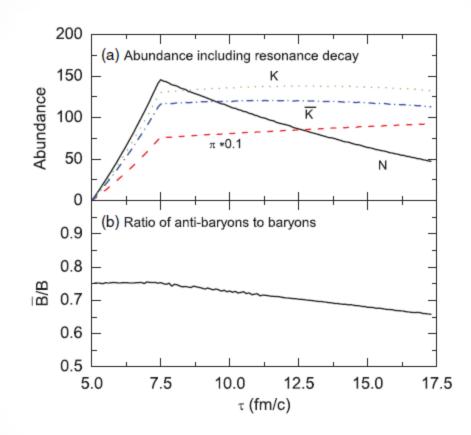
- Hadronic effects on the hadron abundances in heavy ion collisions
- 1) Studying both the initial production yields of hadrons and their evolution in time during the hadronic stage is necessary in order to have a better understanding of the hadronization process in heavy ion collision experiments
- 2) The spin and structure of the X(3872) meson can be identified by investigating the interaction of X(3872) mesons with light hadrons in the hadronic medium
- 3) The decrease of the K* meson abundance can be explained by the hadronic interaction during the hadroni stage of heavy ion collisions

• Strangeness in Quark Matter 2013 The University of Birhmingham

Backup slides


• Strangeness in Quark Matter 2013 The University of Birhmingham

- Dynamics of relativistic heavy ion collisions


$$T(\tau) = T_{C} - (T_{H} - T_{F}) \left(\frac{\tau - \tau_{H}}{\tau_{F} - \tau_{H}}\right)^{4/5}$$
$$V(\tau) = \pi \left[R_{C} + v_{C} (\tau - \tau_{C}) + a / 2(\tau - \tau_{C})^{2} \right]^{2} \tau C$$

L. W. Chen, C. M. Ko, W. Liu, and M. Nielson, Phys. Rev. C 76, 014906 (2007)

- Time evolution of hadron abundances

Lie-Wien Chen, V. Greco, C. M. Ko, S. H. Lee, W. Lin, Phys. Lett. B **601**, 34 (2004) L. W. Chen, C. M. Ko, W. Liu, and M. Nielsen, Phys. Rev. C **76**, 014906 (2007)

• Strangeness in Quark Matter 2013 The University of Birhmingham