Quark-hadron phase transition in a three flavor PNJL model

Kanako Yamazaki
University of Tokyo

1. Motivations : quark-hadron transition
2. 3-flavor Nambu-Jona-Lasinio Model with Polyakov Loop
3. Pseudo-Scalar Mesons and Scalar Mesons
4. Equation of state
in collaboration with Tetsuo Matsui

Quark-Hadron Phase Transition

- Chiral symmetry restoration
- Color de-confinement
- Chiral symmetry breaking
- Color confinement

Quark-Hadron Phase Transition

Quark-Hadron Phase Transition

Method

- Calculating partition function in path integral method
- Model choosing
- Chiral phase transition

- De-confining phase transition \square Polyakov loop
- Bosonization
- inserting dummy integrals
- 4- and 6-point interactions --> bosonic fields
- Mean field approximation + Mesonic correlations

3 flavor PNJL model

Partition function

$$
Z\left(T, A_{4}\right)=\int[d q][d \bar{q}] \exp \left[\int_{0}^{\beta} d \tau \int d^{3} x \mathcal{L}_{\mathrm{NJL}}\left(q, \bar{q}, A_{4}\right)\right]
$$

$$
\mathcal{L}_{N J L}=\sum_{i, j=1}^{3} \bar{q}_{i}(i \not D-\hat{m})_{i, j} q_{j}+\mathcal{L}_{4}+\mathcal{L}_{6}
$$

$$
D_{\mu}=\partial_{\mu}+g A_{A_{0}} \xi_{\mu, 0}
$$

3 flavor PNJL model

Partition function

$$
Z\left(T, A_{4}\right)=\int[d q][d \bar{q}] \exp \left[\int_{0}^{\beta} d \tau \int d^{3} x \mathcal{L}_{\mathrm{NJL}}\left(q, \bar{q}, A_{4}\right)\right]
$$

$$
\mathcal{L}_{N J L}=\sum_{i, j=1}^{3} \bar{q}_{i}(i \not D-\hat{m})_{i, j} q_{j}+\mathcal{L}_{4}+\mathcal{L}_{6}
$$

$$
D_{\mu}=\partial_{\mu}+g A_{0} \beta_{\mu, 0}
$$

- 4 point interaction

$$
\mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{q} \lambda^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \lambda^{a} q\right)^{2}\right]
$$

$$
a=0 \sim 8
$$

3 flavor PNJL model

Partition function

$$
Z\left(T, A_{4}\right)=\int[d q][d \bar{q}] \exp \left[\int_{0}^{\beta} d \tau \int d^{3} x \mathcal{L}_{\mathrm{NJL}}\left(q, \bar{q}, A_{4}\right)\right]
$$

$$
\mathcal{L}_{N J L}=\sum_{i, j=1}^{3} \bar{q}_{i}(i \not D-\hat{m})_{i, j} q_{j}+\mathcal{L}_{4}+\mathcal{L}_{6}
$$

$$
D_{\mu}=\partial_{\mu}+g A_{0} \beta_{\mu, 0}
$$

- 4 point interaction

$$
\mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{q} \lambda^{a} q\right)^{2}+\left(\bar{q} i \gamma_{5} \lambda^{a} q\right)^{2}\right]
$$

$$
a=0 \sim 8
$$

- 6 point interaction $U(1)$ a breaking

$$
\mathcal{L}_{6}=-K\left[\operatorname{det} \bar{q}\left(1+\gamma_{5}\right) q+\operatorname{det} \bar{q}\left(1-\gamma_{5}\right) q\right]
$$

Meson nonets

Pseudo scalar mesons

$\pi, K, \eta, \eta^{\prime}$

\mathcal{L}_{6} plays a role in the mass splitting $4 / 15$

Meson nonets

Scalar mesons

O, K, fO, ©O Ishida, 1998

Fariborz, Jora, Schechter, 2009

$?$

Mass[MeV] Width[MeV] ~ 550 400-700 ~ 800
fo(980) ~980 40-100
ao(980) ~980
50-100

Rewrite P.F. by auxiliary fields

- Lagrangian contains 4th power and 6th power of fermion fields.
- 6th power can be effectively rewritten to 4 th power by replacing with condensate.

- eliminating 4 point interactions to bosonic fields : ϕ^{a}, π^{a}
- We get partition function as a function of auxiliary bosonic fields :

$$
Z\left(T, A_{4}\right)=\int[d \phi][d \pi] \exp \left[-I_{e f f}\left(\phi^{a}, \pi^{a}, A_{4}\right)\right]
$$

Thermodynamic potential

- Expanding effective action up to second order of fluctuation around stationary point
- Stationary point is determined by stationary condition :

$$
\left.\frac{\delta I}{\delta \phi_{a}}\right|_{\phi=\phi_{0}}=0 .
$$

- Performing Gaussian integrals over bosonic fields
- Thermodynamic potential

$$
\Omega\left(T, A_{4}\right)=T\left(I_{0}+\frac{\left.\frac{1}{2} \operatorname{Tr}_{M} \ln \frac{\delta^{2} I}{\delta \phi_{a} \delta \phi_{b}}+\frac{1}{2} \operatorname{Tr}_{M} \ln \frac{\delta^{2} I}{\delta \pi_{a} \delta \pi_{b}}\right)}{\text { mean field }}\right.
$$

Constituent quark mass

- Pressure depends on constituent quark masses.
- Constituent quark masses are determined by solving
gap equations: $\left\{\begin{array}{l}M_{u}=m_{u}-4 G\langle\bar{u} u\rangle+2 K\langle\bar{d} d\rangle\langle\bar{s} s\rangle \\ M_{s}=m_{s}-4 G\langle\bar{s} s\rangle+2 K\langle\bar{u} u\rangle\langle\bar{d} d\rangle\end{array}\right.$

- Chiral condensates : $\langle\bar{u} u\rangle(=\langle\bar{d} d\rangle),\langle\bar{s} s\rangle$

Order Parameters

<l>: Expectation value of Polyakov loop
Tc : pseudo critical temperature
Tc ~ 220 MeV

Pressure under the MFA

$$
p_{M F}(T)=\sum_{f} p_{M_{f}}^{0}+4 N_{c} \sum_{f} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{2}}{3 E_{f}} f_{\langle l\rangle}\left(E_{f}\right)-\mathcal{U}(T)
$$

Pressure under the MFA

$$
p_{M F}(T)=\sum_{f} p_{M_{f}}^{0}+4 N_{c} \sum_{f} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{2}}{3 E_{f}} f_{\langle l\rangle}\left(E_{f}\right)-\mathcal{U}(T)
$$

Pressure under the MFA

$$
p_{M F}(T)=\sum_{f} p_{M_{f}}^{0}+4 N_{c} \sum_{f} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{2}}{3 E_{f}} f_{\langle l\rangle}\left(E_{f}\right)-\mathcal{U}(T)
$$

Pressure under the MFA

$$
p_{M F}(T)=\sum_{f} p_{M_{f}}^{0}+4 N_{c} \sum_{f} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{2}}{3 E_{f}} f_{\langle l\rangle}\left(E_{f}\right)-\mathcal{U}(T)
$$

Mesonic Correlations

- Pressure of mesonic correlation is given as sum of contributions of each meson.

$$
\begin{array}{r}
p_{M}=-\sum_{n} \int \frac{d^{3} q}{(2 \pi)^{3}}\left\{3 \ln \mathcal{M}_{\pi}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{K}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta^{\prime}}\left(\omega_{n}, q\right)\right. \\
\left.+\ln \mathcal{M}_{\sigma}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{\kappa}\left(\omega_{n}, q\right)+3 \ln \mathcal{M}_{a_{0}}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{f_{0}}\left(\omega_{n}, q\right)\right\}
\end{array}
$$

$$
\mathcal{M}\left(\omega_{n}, q\right)=\frac{1}{2 K^{\prime}}-\Pi\left(\omega_{n}, q\right)
$$

- K^{\prime} is effective coupling, combination of G and K :

Mesonic Correlations

- Pressure of mesonic correlation is given as sum of contributions of each meson.

$$
\begin{aligned}
& p_{M}=-\sum_{n} \int \frac{d^{3} q}{(2 \pi)^{3}}\left\{3 \ln \mathcal{M}_{\pi}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{K}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta^{\prime}}\left(\omega_{n}, q\right)\right. \\
& \left.\begin{array}{l}
\text { Pseudo } \\
\text { scalar }
\end{array}+\ln \mathcal{M}_{\sigma}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{\kappa}\left(\omega_{n}, q\right)+3 \ln \mathcal{M}_{a_{0}}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{f_{0}}\left(\omega_{n}, q\right)\right\} \\
& \mathcal{M}\left(\omega_{n}, q\right)=\frac{1}{2 K^{\prime}}-\Pi\left(\omega_{n}, q\right) \quad \Pi\left(\omega_{n}, q\right)=
\end{aligned}
$$

- K^{\prime} is effective coupling, combination of G and K :

Mesonic Correlations

- Pressure of mesonic correlation is given as sum of contributions of each meson.

Scalar

$$
\begin{array}{r}
p_{M}=-\sum_{n} \int \frac{d^{3} q}{(2 \pi)^{3}}\left\{3 \ln \mathcal{M}_{\pi}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{K}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta^{\prime}}\left(\omega_{n}, q\right)\right. \\
\left.+\ln \mathcal{M}_{\sigma}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{\kappa}\left(\omega_{n}, q\right)+3 \ln \mathcal{M}_{a_{0}}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{f_{0}}\left(\omega_{n}, q\right)\right\}
\end{array}
$$

$$
\mathcal{M}\left(\omega_{n}, q\right)=\frac{1}{2 K^{\prime}}-\Pi\left(\omega_{n}, q\right)
$$

$$
\Pi\left(\omega_{n}, q\right)=\square^{\infty}+\cdots n
$$

- K^{\prime} is effective coupling, combination of G and K :

Mesonic Correlations

- Pressure of mesonic correlation is given as sum of contributions of each meson.

$$
\begin{array}{r}
p_{M}=-\sum_{n} \int \frac{d^{3} q}{(2 \pi)^{3}}\left\{3 \ln \mathcal{M}_{\pi}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{K}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{\eta^{\prime}}\left(\omega_{n}, q\right)\right. \\
\left.+\ln \mathcal{M}_{\sigma}\left(\omega_{n}, q\right)+4 \ln \mathcal{M}_{\kappa}\left(\omega_{n}, q\right)+3 \ln \mathcal{M}_{a_{0}}\left(\omega_{n}, q\right)+\ln \mathcal{M}_{f_{0}}\left(\omega_{n}, q\right)\right\}
\end{array}
$$

$$
\mathcal{M}\left(\omega_{n}, q\right)=\frac{1}{2 K^{\prime}}-\Pi\left(\omega_{n}, q\right)
$$

$$
\Pi\left(\omega_{n}, q\right)=\square+\infty
$$

- K^{\prime} is effective coupling, combination of G and K :

Pressure

π, K and σ are taken into this calculation.

Pressure

π, K and σ are taken into this calculation.

Pressure

- At high T

Pressure gets close to quark mean field pressure.

π, K and σ are taken into this calculation.

Comparison with free mesons

π, K and σ are taken into this calculation.

Collective modes

Pion

Imaginary part of M

$$
\mathcal{M}(\omega, q)=\frac{1}{2 K^{\prime}}-\Pi(\omega, q)
$$

Collective modes

Pion

Imaginary part of M

$$
\mathcal{M}\left(\omega_{n}, q\right)=\frac{1}{2 K^{\prime}}-\Pi\left(\omega_{n}, q\right)
$$

Collective modes

Pion

$$
-\Pi\left(\omega_{n}, q\right)
$$

Collective modes

Pion

Kaon

10
5
0
$-5-$
-10
$-15-$
-20
-20
-25
-30
-
-35
-40
$\mathrm{T}=1.15 \mathrm{Tc}$
$\begin{array}{r}\operatorname{Re} M \\ \operatorname{lm} M * 100 \\ \hline\end{array}$
${ }^{1} \omega / q$

Collective modes

Pion

Kaon

Collective modes

Pion

Summary and Outlook

- We have described a quark-hadron phase transition from interacting quarks.
- Collective modes of mesons at low T melt with increasing temperature, and resolve to quarks.
- Melting temperature of pion is higher than that of kaon.
- How to put baryonic correlation at finite chemical potential.

