UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS

THE ELLIPTIC FLOW AND THE SHEAR VISCOSITY OF THE QGP FROM A BEAM ENERGY SCAN

S. Plumari, A. Puglisi, F. Scardina,
V. Greco, L.P. Csernai

- Лransport approach at fixed 』/s:
- $\Omega \Leftrightarrow \sigma(\theta), \mathrm{M}, \mathrm{T}$ comparing Green-Kubo and Chapman-Enkog
approach.
- $1 / 5(\mathrm{~J})$ and generation of v_{2} from Rflle to LHC.
- Conclusjons

Motivation for a kinetic approach：

$$
\begin{aligned}
& \left\{p^{\mu} \partial_{\mu}+\left[p_{v} F^{\mu v}+M \partial^{\mu} M\right] \partial_{\mu}^{p}\right\} f(x, p)=\underbrace{C_{22}+C_{23}}+\ldots \\
& \text { 戸ゝこき } \\
& \text { siceansifs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Collisions } \rightarrow \text { ฤキ }
\end{aligned}
$$

－lit js not ex graclient expansion in $\int /$／s．
－Valid at intersmediate ρ out of equilibrium．
－Vadicl att high sfls（cross over region）．
－Inclucle facclronization by coalescence＋firagmentation．
－Allows to stucly the jet－bulls tallk．

Parton Cascade model

$$
p^{\mu} \partial_{\mu} f(X, p)=C=C_{22}+C_{23}+\ldots \quad \text { Collisions } \longrightarrow\left\{\begin{array}{c}
\varepsilon-3 \rho=0, \\
\Omega \neq 0
\end{array}\right.
$$

$$
\left.\left.C_{22}=\frac{1}{2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}} \frac{1}{v} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \frac{d^{3} p_{2}^{\prime}}{(2 \pi)^{3} 2 E_{2}^{\prime}} f_{1}^{\prime} f_{2}^{\prime}\left|M_{1^{\prime} 2^{\prime} \rightarrow 12}\right|^{2}(2 \pi)^{4} \delta^{44} \right\rvert\, p_{1}^{\prime}+p_{2}^{\prime}-p_{1}-p_{2}\right)
$$

For the numerical implementation of the collision integral we use the stochastic algorithm. (Z. Xu and C. Greiner, PRC 71064901 (2005))

$$
P_{22}=\frac{\Delta N_{\text {coll }}^{2 \rightarrow 2}}{\Delta N_{1} \Delta N_{2}}=v_{\text {rel }} \sigma_{22} \frac{\Delta t}{\Delta^{3} x}
$$

right
solution

Passed several numerical test on the box.

Extraction of the Shear Viscosity: Box calculation

Green - Kubo relation
$\eta=\frac{1}{T} \int d t \int d^{3} x\left\langle\pi^{x y}(x, t) \pi^{x y}(0, t)\right\rangle$
$\left\langle\pi^{x y}(\vec{x}, t) \pi^{x y}(\overrightarrow{0}, t)\right\rangle=\left\langle\pi^{x y}(0) \pi^{x y}(0)\right\rangle \cdot e^{-t / \tau}$

Depends on microscopical

 details: 飞(『)$\eta=\frac{V}{T}\langle\underbrace{x y}(0) \pi^{x y}(0)\rangle,-\tau$
Depends on macroscopical details:

$$
=\frac{4}{15} \frac{e T}{V}
$$

S. Plumari et al.,Phys.Rev. C86 (2012) 054902.
C. Wesp et al., Phys. Rev. C 84, 054911 (2011).
J. Fuini III et al. J. Phys. G38, 015004 (2011).

Extraction of the Shear Viscosity: Box calculation

$\eta_{\text {relax }}^{\text {IS }} / s=\frac{1}{15}\langle p\rangle \tau_{r}=\frac{1}{15} \frac{\langle p\rangle}{\sigma_{\text {tot }}\left\langle f(a) v_{\text {rel }}\right\rangle \rho}$
$\sigma_{\text {tr }}=\int d \Omega \sin ^{2}\left(\theta_{c m}\right) \frac{d \sigma}{d \Omega_{c m}}=\sigma_{\text {tot }} f(a) \leq \frac{2}{3} \sigma_{\text {tot }}$
For the standard pQCD-like cross section

$$
\frac{d \sigma}{d \Omega_{c m}}=\frac{9 \pi \alpha_{S}^{2}}{2} \frac{1}{\left(q^{2}+m_{D}^{2}\right)^{2}}\left(1+\frac{m_{D}^{2}}{s}\right)
$$

Employed also for non-isotropic cross section:

> G.Ferini, PLB(2009); D. Molnar, JPG35(2008); V.Greco, PPNP(2009);

13t $^{\text {st }}$ Chapman-Enskoy approximation
$[\eta]_{1 \text { st }} / s=\frac{1}{15}\langle p\rangle \tau_{\eta}=\frac{1}{15} \frac{\langle p\rangle}{\sigma_{\text {tot }} g(a) \rho}$
$g(a)=\frac{1}{50} \int d y y^{6}\left[\left(y^{2}+\frac{1}{3}\right) K_{3}(2 \mathrm{y})-y K_{2}(2 \mathrm{y})\right] f(a), a=\frac{m_{D}}{2 \mathrm{~T}}$

- CE and RTA can dififier by a factor of 2 - Green-Kubo agree with CE (<5\%)
A. Wiranata, M. Prakash, PRC 85 (2012) 054908.
O. N. Moroz, arXiv:1112.0277 [hep-ph].
S. Plumari et al.,PRC86 (2012) 054902.

- We know how to fix locally $\eta / s(T)$
- We have checked the Chapmann-Enskog:
- CE good already at I I° order $\approx 5 \% ~\left(\approx 3 \%\right.$ at II ${ }^{\circ}$ order $)$
- RTA even with otir severely underestimates η

For the general case of anisotropic cross section and massless particles:

$$
\eta(\vec{x}, t) / s=\frac{1}{15}\langle p\rangle \tau_{\eta} \quad \longleftrightarrow \sigma_{\text {tot }}^{\eta / s}=\frac{1}{15} \frac{\langle p\rangle}{g\left(m_{D} / 2 \mathrm{~T}\right) n} \frac{1}{\eta / s}=K \sigma_{\text {tot }}^{p Q C D}
$$

Huovinen and Molnar, PRC79(2009)

At low p_{T} equivalent to Hydro dynamics

D. Molnar et al., JPG 35, (2008). QM08

Initial condition of our simulation

Discarded in viscous hydro

Then we scalle it according to

$$
\frac{1}{\tau A_{T}} \frac{d N_{c h}}{d \eta} \propto T^{3}
$$

	62 GeV	200 GeV	2.76 TeV
$\mathrm{V}_{\mathbf{s}}$			
$\mathbf{T}_{\mathbf{0}}$	290 MeV	340 MeV	590 MeV
τ_{0}	$0.7 \mathrm{fm} / \mathrm{c}$	$0.6 \mathrm{fm} / \mathrm{c}$	$0.3 \mathrm{fm} / \mathrm{c}$

Initial condition of our simulation

Discarded in viscous hydro

kinetic freeze-out scheme

- Thne foo. Is tine jucrease of rfls in the ciossjoger segion, with at smooth transition betyeen the QGP and the fuacdronic pistese, the collisions are switcined ofis.

For the \mathbf{v}_{2} similar to cut-off at $\varepsilon_{0}=0.7 \mathrm{GeV}^{2} \mathrm{fm}^{3}$

kinetic freeze-out scheme

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

S. Plumari et al., J. Phys.: Conf. Ser. 420012029 (2013). arXiv:1209.0601.

RHIC:

- Like viscous hydro the data are close to $\eta / s=1 /(4 \pi)+$ f.o.
- Sensitive reduction of the v_{2} when the f.o. is included the effect is about of 20%.
- $p_{T}<2.5 \mathrm{GeV}$ good agreement with the experimental data.

LHC:

- $p_{T}<2 \mathrm{GeV}$ like hydro data described with $\eta / s=1 /(4 \pi)+$ f.o.
- Smaller effect on the reduction of the \mathbf{v}_{2} when the f.o. is included an effect of about 5\%.
- Without the kinetic freezout the effect of a constant $\eta / s=2(4 \pi)^{-1}$ is to reduce the v_{2} of 15%.

kinetic freeze-out scheme

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

S. Plumari et al., J. Phys.: Conf. Ser. 420012029 (2013). arXiv:1209.0601.

At LHC the contamination of mixed and hadronic phase becomes negligible
Longer life time of QGP $\rightarrow \mathbf{v}_{\mathbf{2}}$ completely developed in the QGP phase (at least up to $\mathbf{3} \mathrm{GeV}$)

Effect of $\eta / s(T)$ in Hydro: Niemi et al.

$T^{\mu \nu}=T_{e q}^{\mu \nu}+\delta T^{\mu \nu} \leftarrow f_{e q}+\delta f$
Grad ansantz
R. Lacey et al., PRC82
$\delta f=\underbrace{\frac{\pi^{\mu \nu} p_{\mu} p_{v}}{(\varepsilon+p) T^{2}} f_{e q} \approx \frac{\eta}{3 s} \frac{p_{T}^{2}}{\tau T^{2}} f_{e q}}$

- This inplies that the of is in Relaxation Time Approximation
D. Teaney,Phys.Rev. C68 (2003) 034913
- Hydro is velid up to $\mathrm{p}_{\mathrm{T}} \sim 3 \mathrm{GeV}$

$\eta / s(T)$ around to a phase transition

- Quantum mechanism $\Delta E \cdot \Delta t \geq 1 \rightarrow \eta / s \approx \frac{1}{15}\langle p\rangle \cdot \tau>\frac{1}{15}$
- AdS/CFT suggest a lower bound $\mathrm{n} / \mathrm{s}=1 /(4 \mathrm{\pi}) \sim 0.08$

The QGP viscosity is close to this bound!

Do we have signature of a 'U' shape of $\boldsymbol{\eta} / \mathbf{s}(\mathrm{T})$ for the QCD matter ?
P. Kovtun et al.,Phys.Rev.Lett. 94 (2005) 111601.
L. P. Csernai et al., Phys.Rev.Lett. 97 (2006) 152303.
R. A. Lacey et al., Phys.Rev.Lett. 98 (2007) 092301.

From pQCD: $\eta / s \sim \frac{1}{g^{4} \ln (1 / g)} \Rightarrow \eta / s \sim 1$
P.Arnold et al., JHEP 0305 (2003) 051.

Temperature dependent $\eta / s(T)$

Phetse transition physic suggest a T clepenclence of ๆ/s alloo in the QGP phase

- Lopid sorse sesulis for guenched Efpprosis Jarge error beirs
- Outsj-Particle models seem to

- Conisal perturbation theory \rightarrow Meson Gels
- Internediate Energies - JE ($\mu_{\mathrm{B}}>\mathrm{T}$)

S. Plumari et al., J. Phys.: Conf. Ser. 420012029 (2013). arXiv:1209.0601.

Temperature dependent $\eta / s(T)$

Phbse transition physic suggest a T dependence of n/s Elso in the QGP phase

- Lopid sorne sesults for guenched alpproxi Jarge error bears
- ?ulasijparticle noodels seen to

S. Plumari et al., J. Phys.: Conf. Ser. 420012029 (2013). arXiv:1209.0601.

Temperature dependent $\eta / s(T)$

Plumari, Greco, Csernai, arXiv:1304.6566

- For $4 \pi \eta / s=1$ during all the evolution of the fireball we get a discrepancy for the $\mathbf{v}_{\mathbf{2}}\left(p_{T}\right)$, in particular we observe a smaller $\mathbf{v}_{\mathbf{2}}\left(\mathrm{p}_{\mathrm{T}}\right)$ at LHC.
- Similar results for $\eta / s \propto \mathbf{T}^{2} \rightarrow$ a discrepancy about 20\%.
- Notice only with RHIC \rightarrow scaling for $4 \pi \eta / s=1$ LHC data play a key role

Temperature dependent $\eta / s(T)$

Plumari, Greco, Csernai,
arXiv:1304.6566

- Invariance of $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ in BES suggest that the system goes through a phase transition.
- Hope: $\mathrm{v}_{\mathrm{n}}, \mathrm{n}>3$ with an event-by-event analysis will put even stronger consstraint
- Implementation of local fluctuation under development
- Similar results: R. A. Lacey et al., arXiv:1305.3341 [nucl-ex].

Conclusions and Outlook

- Enhancement of $\eta / s(T)$ in the cross-over region affect differently the expanding QGP from RHIC to LHC.
- At LHC nearly all the v_{2} from the QGP phase.
- The scaling of $V_{2}\left(P_{T}\right)$ from Beam Energy Scan indicate a 'U' shape of $\eta / s(T)$ this would be a first signature of $\eta / s(T)$ behavior typical of a phase transition.

Finite masses and EoS

$$
p^{\mu} \partial_{\mu} f(x, p)=C_{22}
$$

$$
M \neq 0 \rightarrow\left\{\begin{array}{l}
\varepsilon-3 p \neq 0 \\
c z=\frac{1}{3}
\end{array}\right.
$$

Extraction of the Shear Viscosity: Box calculation

Relaxation Time Approximation Kapusta, PRC(2010); Gavin NPA(1985);
$\left.\left.\eta=\frac{1}{15 T} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{4}}{E^{2}} \tau(E) f^{e q}(E) \quad \tau^{-1} \right\rvert\, E\right)=\rho\left\langle\sigma_{\text {tot }} v_{\text {rel }}\right\rangle$
$\eta_{\text {relax }}=0.8 \frac{T}{\sigma_{\text {tot }}} \longmapsto \eta \sim \frac{1}{\sigma_{\text {tot }}}$
Usual as Relax. Time Approx. - Israel Stewart $\quad \sigma_{\text {tot }} \rightarrow \sigma_{t r}=(2 / 3) \sigma_{\text {tot }}$
$\eta_{\text {relax }}^{I S}=0.8 \frac{T}{\sigma_{\text {tr }}}=1.2 \frac{T}{\sigma_{\text {tot }}}$ Molnar-Huovenin PRC(2009), G. Ferini PLB(2009), Khvorostukhin PRC (2010)
S. Plumari et al.,PRC86 (2012) 054902.

Isotropic cross section: massless case

- At $1^{\text {st }}$ order of approx in the Chapman-Enskog:

$$
|\eta|_{1 \mathrm{st}}^{C E}=1.2 \frac{T}{\sigma_{\text {tot }}}
$$

- successive approx. up to 16 order:

$$
[\eta]_{C E}^{16 \mathrm{th}}=1.267 \frac{T}{\sigma_{\text {tot }}}
$$

A. Wiranata, M. Prakash, arXiv:1203.0281 [nucl-th]. O. N. Moroz, arXiv:1112.0277 [hep-ph].

Extraction of the Shear Viscosity: Box calculation

Isotropic cross section: massive case

Massive case is relevant in quasi-particle models where M(T). Good agreement with CE $1^{\text {st }}$ order for isotropic cross section and massive particles.

$1^{\text {st }}$ Chapman-Enskog approximation

$$
\begin{aligned}
& {[\eta]_{1 \mathrm{st}}=10 T\left[\frac{K_{3}(z)}{K_{2}(z)}\right]^{2} \frac{1}{c_{00}}=g\left(m_{D}, T\right) \frac{T}{\sigma_{t o t}}} \\
& c_{00}=16\left[\omega_{2}^{(2)}-z^{-1} \omega_{1}^{(2)}+\left(3 z^{2}\right)^{-1} \omega_{0}^{(2)}\right] \text { for } s=2 \propto \sigma_{t r} \\
& \omega_{i}^{(s)}=\frac{2 \pi z^{3}}{\left[K_{2}(z)\right]^{2}} \int d y\left(y^{2}-1\right)^{3} y^{i} K_{j}(2 z y) \int d \Theta \sin \Theta \frac{d \sigma}{d \Omega}\left(1-\cos ^{s} \Theta\right) \\
& {[\eta]_{1 s t}^{C E}=f(z) \frac{T}{\sigma_{t o t}}} \\
& f(z)=\frac{15}{16} \frac{z^{4} K_{3}^{2}(z)}{\left(15 z^{2}+2\right) K_{2}(2 z)+\left(3 z^{3}+49 z\right) K_{3}(2 z)} \\
& \text { A. Wiranata, M. Prakash, arXiv:1203.0281 [nucl-th]. } \\
& \text { O. N. Moroz, arXiv:1112.0277 [hep-ph]. } \\
& \text { S. Plumari et al., arXiv:1208.0481 [nucl- } \\
& \text { th]. }
\end{aligned}
$$

Extraction of the Shear Viscosity: Box calculation

Green - Kubo relation
$\left.\begin{array}{l}\eta=\frac{1}{T} \int d t \int d^{3} x\left\langle\pi^{x y}(x, t) \pi^{x y}(0, t)\right\rangle \\ \left\langle\pi^{x y}(\vec{x}, t) \pi^{x y}(\overrightarrow{0}, t)\right\rangle=\left\langle\pi^{x y}(0) \pi^{x y}(0)\right\rangle \cdot e^{-t / \tau}\end{array}\right\} \longleftrightarrow \eta=\frac{V}{T}\left\langle\pi^{x y}(0) \pi^{x y}(0)\right\rangle \cdot \tau$

S. Plumari et al.,Phys.Rev. C86 (2012) 054902.
C. Wesp et al., Phys. Rev. C 84, 054911 (2011).
J. Fuini III et al. J. Phys. G38, 015004 (2011).

Temperature dependent $\eta / s(T)$

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

S. Plumari et al., arXiv:1209.0601 [hep-ph].

RHIC:

- The v_{2} is insensitive to the value of η / s in the QGP phase
- $\eta / \mathbf{s} \sim \mathrm{T}^{2}$ cannot account for the V_{2} decrease for $p_{T}>2.5 \mathrm{GeV}$.

LHC:

- The \mathbf{v}_{2} more sensitive to the QGP phase but still a strong temperature dependence in η / s has a small effect in the $v_{2}\left(p_{T}\right)$.

Relevance of the microscopic scale

- Microscopic details of the cross section have an effect on \mathbf{v}_{2} for $p_{\mathrm{T}}>1.5 \mathrm{GeV}$
- Fixed the ratio $\boldsymbol{\eta} / \mathrm{s}$ of the fluid the isotropic cross section leads to a smaller v_{2}
- An appropriate $m_{D}(T)=g(T) T$ gives a different behaviour between RHIC and LHC.

Information from non-equilibrium: elliptic flow

$$
\varepsilon_{x}=\left\langle\frac{y^{2}-x^{2}}{y^{2}+x^{2}}\right\rangle
$$

The v_{2} / ε measures efficiency in converting the eccentricity from $v_{2}=\langle\cos 2 \phi\rangle=\left\langle\frac{p_{x}^{2}-p_{y}^{2}}{p_{x}^{2}+p_{y}^{2}}\right\rangle$
Coordinate to Momentum space J.Y. Ollitrault, PRD 46 (1992).

Can be seen also as Fourier expansion $\frac{d N}{d p_{T} d \phi}=\frac{d N}{d p_{T}}\left[1+2 v_{2} \cos (2 \phi)+2 v_{4} \cos (4 \phi)+\ldots\right.$
by symmetry $\mathbf{v}_{\mathbf{n}}$ with \mathbf{n} odd expected to be zero ... (but event by event fluctuations)

