

University of Catania INFN-LNS

Heavy flavor Suppression : Langevin vs Boltzmann

S. K. Das, F. Scardina and V. Greco

Outline Of my talk.....

Introduction

- □ Langevin Equation and the Thermalization Issue
- **Boltzmann Equation and the Thermalization Issue**
- □ Nuclear Suppression: Langevin vs Boltzmann
- □ Summary and outlook

Introduction

At very high temperature and density hadrons melt to a new phase of matter called Quark Gluon Plasma (QGP).

 τ HQ > τ LQ , τ HQ ~ (M/T) τ LQ

Heavy flavor at RHIC

PHENIX: PRL98(2007)172301

At RHIC energy heavy flavor suppression is similar to light flavor

Heavy Flavors at LHC

Again at LHC energy heavy flavor suppression is similar to light flavor

Is the momentum transfer really small !

Boltzmann Kinetic equation

$$\left(\frac{\partial}{\partial t} + \frac{P}{E}\frac{\partial}{\partial x} + \mathbf{F}\cdot\frac{\partial}{\partial p}\right)f(x, p, t) = \left(\frac{\partial f}{\partial t}\right)_{col}$$

$$R(p,t) = \left(\frac{\partial f}{\partial t}\right)_{col} = \int d^{3}k \left[\omega(p+k,k)f(p+k) - \omega(p,k)f(p)\right]$$

$$\omega(p,k) = g \int \frac{d^3 q}{(2\pi)^3} f'(q) v_{q,p} \sigma_{p,q \to p-k,q+k}$$

is rate of collisions which change the momentum of the charmed quark from p to p-k

$$\omega(p+k,k)f(p+k) \approx \omega(p,k)f(p) + k \cdot \frac{\partial}{\partial p}(\omega f) + \frac{1}{2}k_ik_j \frac{\partial^2}{\partial p_i\partial p_j}(\omega f)$$
$$\frac{\partial \mathbf{f}}{\partial \mathbf{t}} = \frac{\partial}{\partial \mathbf{p}_i} \left[\mathbf{A}_i(\mathbf{p})\mathbf{f} + \frac{\partial}{\partial \mathbf{p}_j} \left[\mathbf{B}_{ij}(\mathbf{p})\mathbf{f} \right] \right]$$
B. Svetitsky PRD 37(1987)2484

where we have defined the kernels

'
$$A_i = \int d^3 k \omega (p, k) k_i \rightarrow Drag Coefficient$$

 $B_{ij} = \int d^{3}k \omega (p, k)k_{i}k_{j} \rightarrow Diffusion Coefficient$

It will interesting to study both the equation in a identical environment to ensure the validity of this assumption.

Langevin Equation

$$dx_{j} = \frac{p_{j}}{E} dt$$
$$dp_{j} = -\Gamma p_{j} dt + \sqrt{dt} C_{jk} (t, p + \xi dp) \rho_{k}$$

where Γ is the deterministic friction (drag) force

 C_{ij} is stochastic force in terms of independent

Gaussian-normal distributed random variable

$$\rho = (\rho_{x,\rho_{y},\rho_{z}}) \qquad P(\rho) = \left(\frac{1}{2\pi}\right)^{3} \exp(-\frac{\rho^{2}}{2})$$

With $<\rho_i(t)\rho_k(t')>=\delta(t-t')\delta_{jk}$

H. v. Hees and R. Rapp arXiv:0903.1096

 $\xi=0$ the pre-point I to

interpretation of the momentum argument of the covariance matrix.

Langevin process defined like this is equivalent to the Fokker-Planck equation:

$$\frac{\partial f}{\partial t} + \frac{p_j}{E} \frac{\partial f}{\partial x_j} = \frac{\partial}{\partial p_j} \left[\left(p_j \Gamma - \xi C_{lk} \frac{\partial C_{jk}}{\partial p_l} \right) f \right] + \frac{1}{2} \frac{\partial^2}{\partial p_j \partial p_k} (C_{jl} C_{kl} f)$$

the covariance matrix is related to the diffusion matrix by

$$C_{jk} = \sqrt{2B_0} P_{jk}^{\perp} + \sqrt{2B_1} P_{jk}^{\parallel}$$

$$\begin{array}{ll} \text{and} \qquad A_i = p_j \Gamma - \xi C_{lk} \, \frac{\partial C_{ij}}{\partial p_i} \\ \\ \text{With} \qquad B_0 = B_1 = D \qquad \qquad C_{jk} = \sqrt{2D(E)} \delta_{jk} \end{array}$$

Relativistic dissipation-fluctuation relation

$$A(E)ET - D(E) + T(1 - \xi)D'(E) = 0$$

For Collision Process the A_i and B_{ij} can be calculated as following :

$$A_{i} = \frac{1}{2E_{p}} \int \frac{d^{3}q}{(2\pi)^{3} 2E_{q}} \int \frac{d^{3}q'}{(2\pi)^{3} 2E_{q'}} \int \frac{d^{3}p'}{(2\pi)^{3} 2E_{p'}} \frac{1}{\gamma_{c}} \sum |M|^{2} (2\pi)^{4} \delta^{4} (p+q-p'-q')f(q) [(p-p')_{i}] = \left\langle \left\langle (p-p')_{i} \right\rangle \right\rangle$$
$$B_{ij} = \frac{1}{2} \left\langle \left\langle (p-p')_{i} (p'-p)_{j} \right\rangle \right\rangle$$

Elastic processes

 We have introduce a mass into the internal gluon propagator in the t and u-channel-exchange diagrams, to shield the infrared divergence.

B. Svetitsky PRD 37(1987)2484

Thermalization in Langevin approach in a static medium

1) Diffusion D=Constant Drag A= D/ET from FDT

2) Diffusion D(p) and Drag A(p) both from pQCD

$$A(E)ET - D(E) + T(1 - \xi)D'(E) = 0$$

p (GeV)

In this case we are away from thermalization.

Transport theory

Collision integral is solved with a local stochastic sampling

[Z. Xhu, et al. PRC71(04)] Greco et al PLB670, 325 (08)] $P_{22} = \frac{\Delta N_{coll}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{rel} \sigma_{22} \frac{\Delta t}{\Delta^3 x}$

Cross Section gc -> gc

Charm evolution in a static medium

C and Cbar are initially distributed: uniformily in r-space, while in pspace

Due to collisions charm approaches to thermal equilibrium with the bulk

Langevin vs Boltzmann

Case:1 $m_D = 0.83 \text{ GeV}$ (~gT, pQCD)

Case:2 $m_D = 3 \text{ GeV}$ (Isotropic)

Case:3 $m_D = 0.4 \text{ GeV}$ (Forward-backword peak)

We have scaled our interaction in such a way that our thermalization time is always same for all the three case.

T-matrix cross section are usually isotropic

Hees, Mannarelli, Greco, and R. Rapp Phys. Rev. Lett. 100, 192301 (2008)

Ratio between Langevin and Boltzmann At fixed time (FBP)

Nuclear Suppression: Langevin vs Boltzmann (pQCD)

Suppression is more in Langevin approach than Boltzmann

Suppression is more in Langevin approach than Boltzmann

To have a phenomenological touch let put the RHIC data although our calculation is only for a box

To compensate the difference in the RAA we need to reduce the diffusion coefficient around 30-40% which is the phenomenological interest

Calculation in a realistic background is under progress

Summary & Outlook

- Both Langevin and Boltzmann equation has been solved in a box for heavy quark propagating in a thermal bath composed of gluon at T= 400 MeV.
- Boltzmann equation follow exact thermalization criteria.
- In Langevin case suppression is stronger than the Boltzmann case by a factor around 2 for the isotropic.
- To compensate the difference between the Langevin and Boltzmann we need to reduce the diffusion coefficients around 30-40 %.
- **For the anisotropic (FBP) case Langevin dynamics is a good approximation.**
- It would be interesting to compare the v2 from both Langevin and Boltzmann side.
- **Calculations in a realistic background is under progress.**

Momentum transfer

Distribution of the squared momenta transfer k² for fixed momentum P of the

charm

The momenta transfer of gg->gg and gc-> gc are not so different

