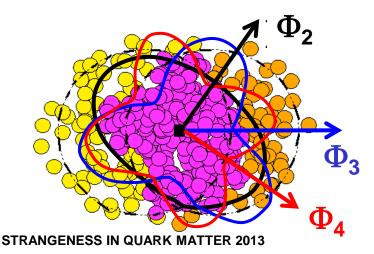
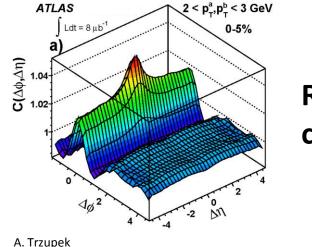
Recent ATLAS results on flow measurements in lead-lead and proton-lead collisions

Adam Trzupek for the ATLAS Collaboration Institute of Nuclear Physics PAS, Kraków, Poland

The 14th International Conference on Strangeness in Quark Matter, 21-27 July 2013, Birmingham

Azimuthal Anisotropy of Produced Particles

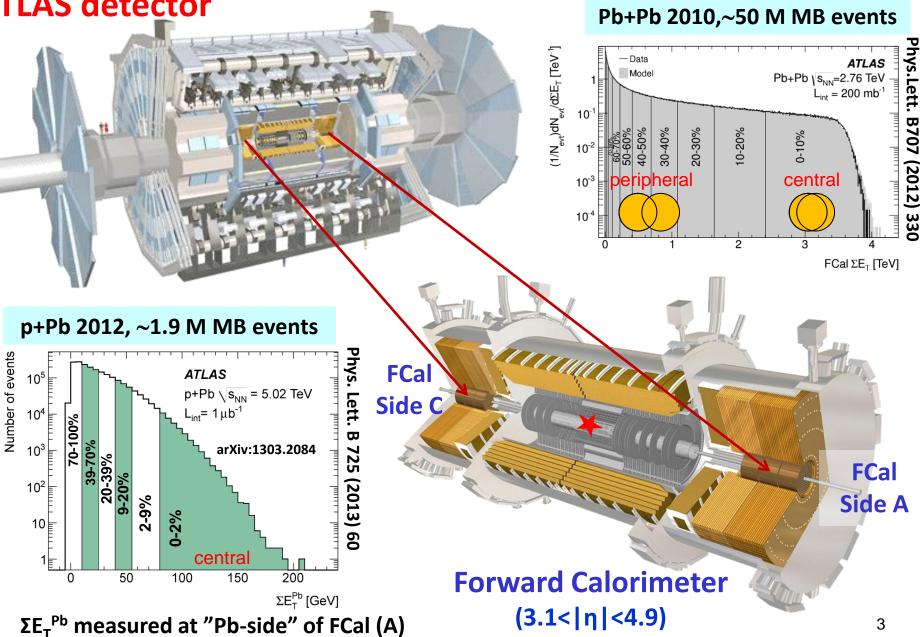

Strongly coupled QGP



• Pressure gradients lead to azimuthal anisotropy

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n cos[n(\varphi - \Phi_n)]$$

- Initial shape of the interaction region (v₂- elliptic flow)
- Initial spatial fluctuations of interacting nucleons (higher orders, v_n)



Ridge in Pb+Pb collisions

Event Centrality Measurement in Pb+Pb and p+Pb

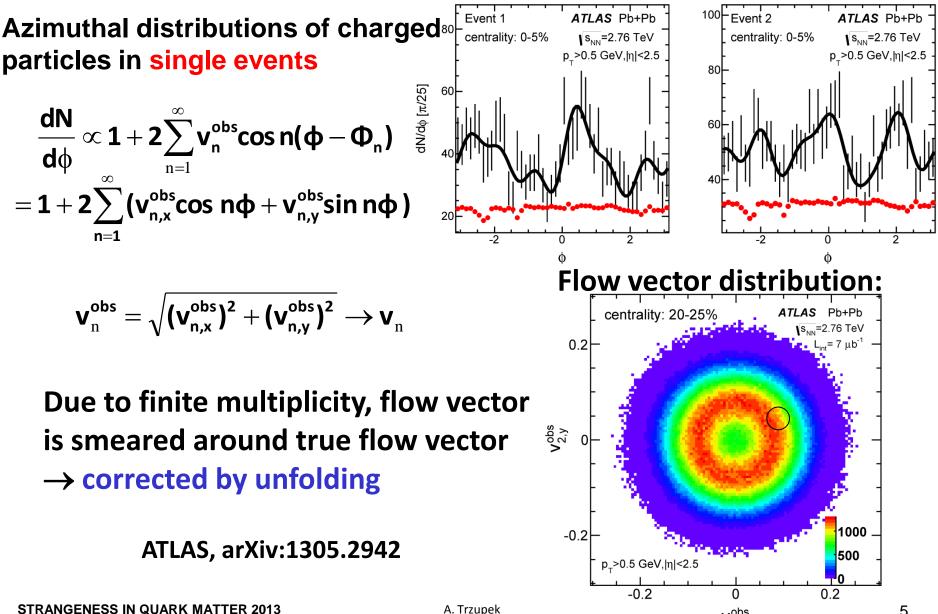
ATLAS detector

v_n Harmonics Measurement

ATLAS detector

Fourier harmonics are measured with charged particles reconstructed in the inner detector

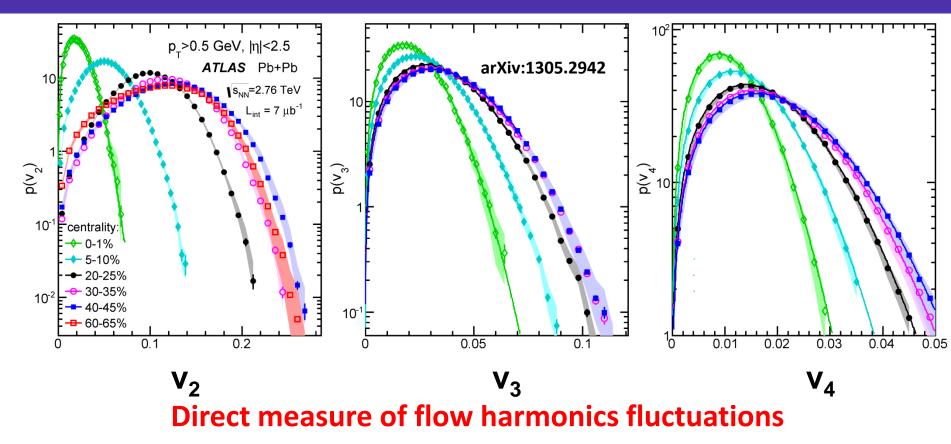
Inner detector, ID


ID tracks (Pixel+SCT)

- p_T > 0.5 GeV
- -2.5 < η < 2.5
- full ϕ acceptance

Pixel

detector


Measurement of Event-by-Event v_n in Pb+Pb

A. Trzupek

,obs

Unfolded Distributions of v₂, v₃ and v₄ in Pb+Pb

v_n distributions normalized to unity for n = 2,3 and 4.
 Lines represent radial projections of 2D Gaussians, rescaled to <v_n>

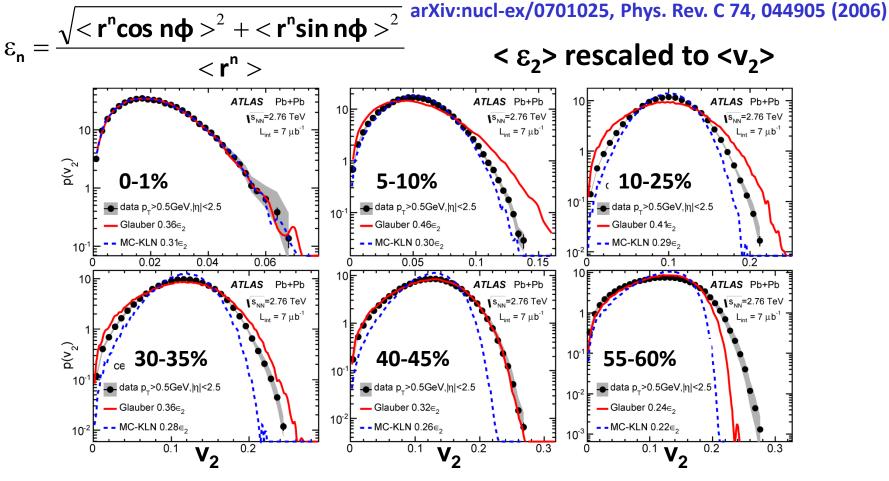
 $P(v_n) = \frac{v_n}{\sigma^2} e^{-\frac{v_n^2}{2\sigma^2}}, \qquad \succ \text{ for } v_2 \text{ only in 0-2\% of most central collisions} \\ \succ \text{ for } v_3 \text{ and } v_4 \text{ over all centralities}$

Event-by-Event Fluctuations of v₂, v₃ and v₄ in Pb+Pb

- σ_{v₂} /<v₂> shows strong centrality dependence
- σ_{v_3} /<v₃> and σ_{v_4} /<v₄> are consistent with Gaussian fluctuations
- Same relative fluctuations for 0.5<p_T<1GeV, p_T>0.5GeV and p_T>1GeV

Dotted lines indicate the Gaussian limit:

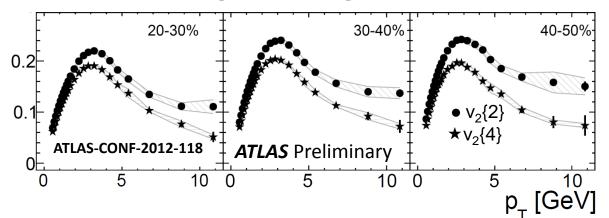
$$P(v_n) = \frac{v_n}{\sigma^2} e^{-\frac{v_n^2}{2\sigma^2}}, \quad \frac{\sigma_{v_n}}{} = \sqrt{\frac{4}{\pi} - 1} \approx 0.523$$


STRANGENESS IN QUARK MATTER 2013

$$\sqrt[6]{V_n} \sqrt[6]{V_n}$$

A. Trzupek

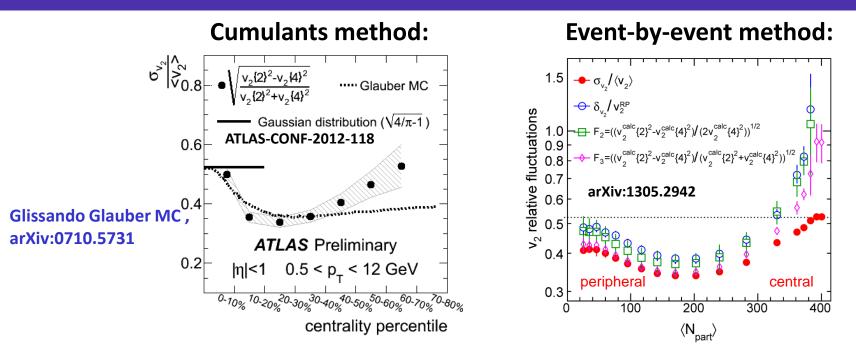
Comparison to MC Glauber and KLN models


Eccentricity distributions from MC Glauber and KLN models

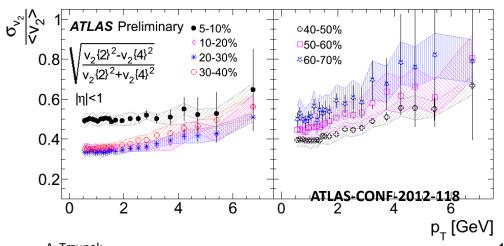
- Both work in 0-1%
- MC KLN better in 5-10%
- MC Glauber better in 30-60%


Cumulant Harmonics: v₂{2} and v₂{4} in Pb+Pb

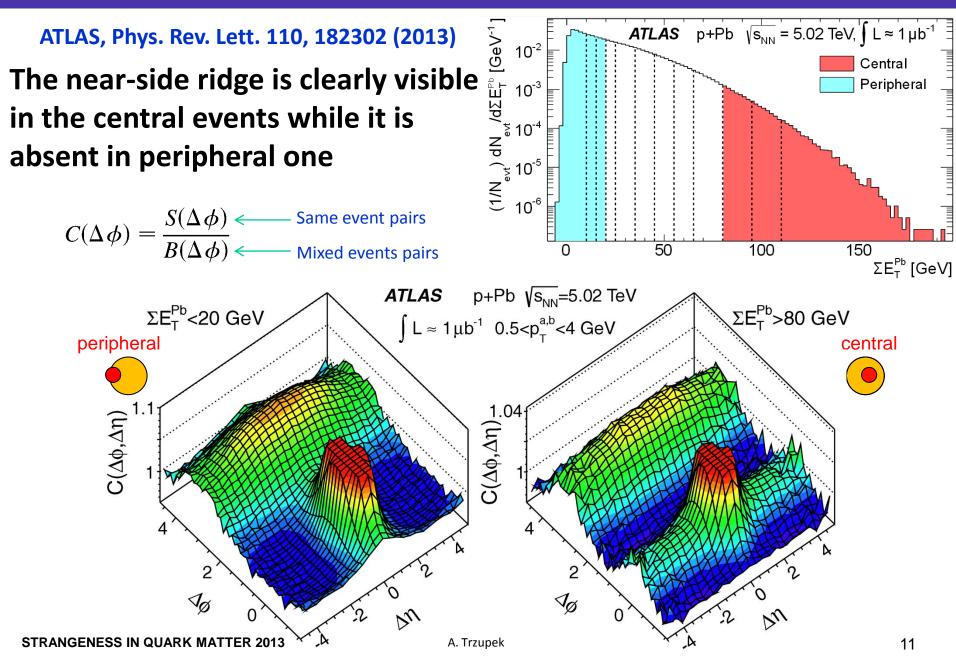
Elliptic flow harmonics of charged particles were obtained with the cumulant generating function method


N. Borghini, P.M.Dinh and J.Y. Ollitrault Phys.Rev.C 64 (2001) 054901

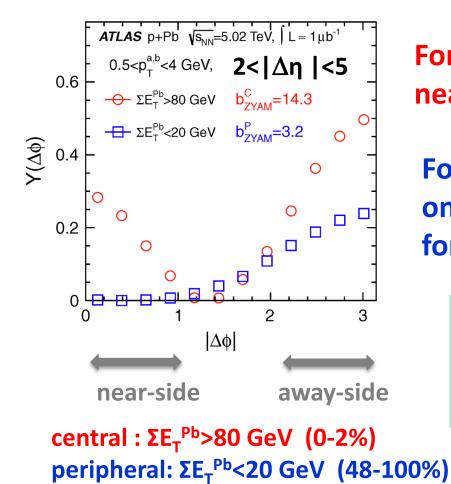
Strong reduction of v_2 is observed by using four-particle cumulants



 Excellent agreement of v₂{4} between ATLAS, ALICE and CMS


Event-by-Event Fluctuations from v₂{2} and v₂{4}

- $\sigma_{v_2}/\langle v_2 \rangle$ from cumulants is consistent with MC Glauber and EbyE results (in 5-50%)
 - Relative flow fluctuations are independent of p_T for 5-10% cent. bin
 - For less central collisions $\sigma_{v2}/\langle v_2 \rangle$ increases with p_T

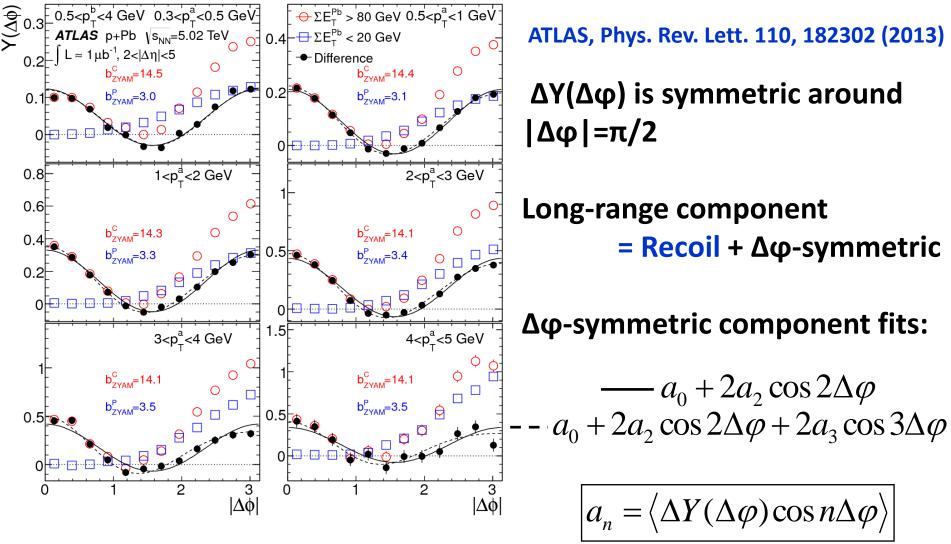


Collective flow in p+Pb?

Two-particle Correlations in p+Pb Collisons

"Per trigger yield" corrected for combinatorial background (b_{ZYAM}): $Y(\Delta \varphi) = \frac{\int B(\Delta \varphi) d\Delta \varphi}{\pi N_a} C(\Delta \varphi) - b_{ZYAM}$

For central events Y(Δφ)^{cent} has two near-side and (larger) away-side peaks


For peripheral events $Y(\Delta \phi)^{periph}$ has only one, away-side peak, characteristic for recoil contribution

Recoil subtraction: $\Delta Y(\Delta \phi) = Y(\Delta \phi)^{cent} - Y(\Delta \phi)^{periph}$

STRANGENESS IN QUARK MATTER 2013

After Recoil Subtraction: ΔY(Δφ)

 $\Delta Y(\Delta \phi) = Y(\Delta \phi)^{cent} - Y(\Delta \phi)^{periph}$ for different ranges in p_T^a

STRANGENESS IN QUARK MATTER 2013

Harmonics of Recoil Subtracted Correlation in p+Pb

$$c_{n} = \langle C_{R.S.}(\Delta\phi)\cos(n\Delta\phi) \rangle = a_{n} / (b_{ZYAM}^{c} + a_{0}), n = 2,3 \iff v_{n,n}$$
Convert to a single-particle
level assuming factorization 0.15

$$c_{n}(p_{T}^{a}, p_{T}^{b}) = s_{n}(p_{T}^{a}) \cdot s_{n}(p_{T}^{b})$$

$$c_{n}(p_{T}^{a}, p_{T}^{b}) = s_{n}(p_{T}^{a}) \cdot s_{n}(p_{T}^{b})$$

$$s_{n}(p_{T}^{a}) = c_{n}(p_{T}^{a}, p_{T}^{b}) / \sqrt{c_{n}(p_{T}^{b}, p_{T}^{b})}$$

$$s_{n} \longleftrightarrow v_{n}\{2PC\}$$
ATLAS, Phys. Rev. Lett. 110, 182302 (2013)

$$a_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b})$$

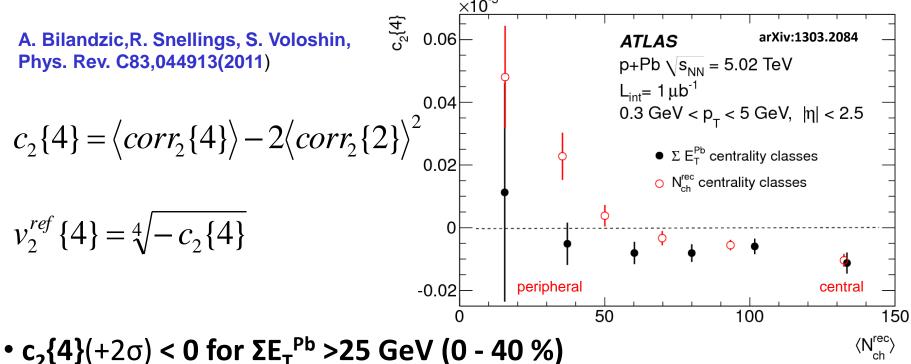
$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{b})$$

$$c_{n} = \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b}) - \frac{1}{2} C_{n}(p_{T}^{a}, p_{T}^{b})$$

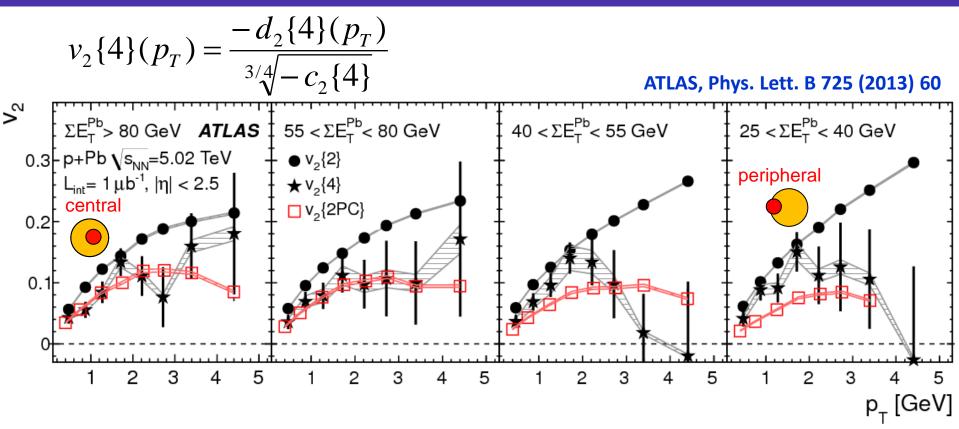

$$c_{n} = \frac{$$

- s_2 increases with p_T up to ~3 GeV, then drops
- $s_3 < s_2$ over the measured p_T

Four-particle Cumulants in p+Pb Collisions

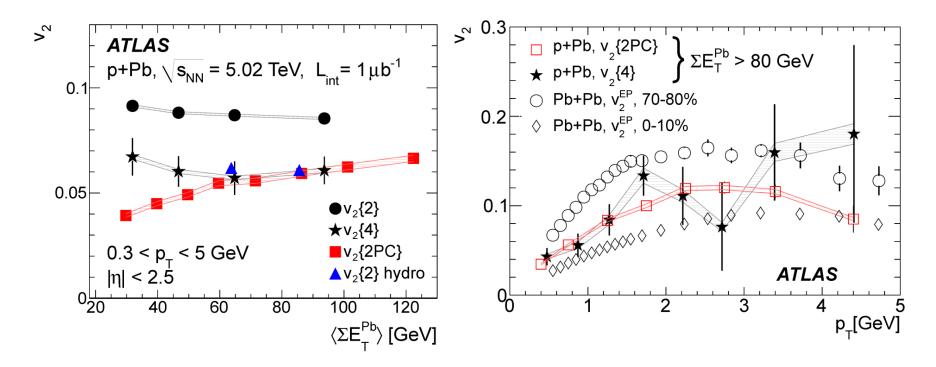
ATLAS, Phys. Lett. B 725 (2013) 60

 $c_2{4}$ – free from non-flow effects of two-particle correlations



• $c_2{4}$ (ΣE_T^{Pb} centrality) agree with $c_2{4}$ (N_{ch} centrality) for $N_{ch}^{rec} > 70$

Clear sign of significant flow-like 4-particle correlations in central (high multiplicity) p+Pb collisions


STRANGENESS IN QUARK MATTER 2013

p_T - dependence of v₂{4} in p+Pb

- Strong reduction of v₂ when using four-particle cumulants
- Good agreement with v_2 {2PC} for ΣE_T^{Pb} >55 GeV (0 20 %)
- Differences for $\Sigma E_{T}^{Pb} < 55 \text{ GeV}$:
 - recoil subtraction, non-flow in v₂{4} or both

Centrality Dependence of v₂{4} in p+Pb

- Significant $v_2{4} \approx 0.06$
 - Weaker/stronger than in peripheral/central Pb+Pb collisions
 - Systematically larger, by 15-20%, than v₂{4}_{CMS} arXiv:1305.0609
- Good agreement with the hydrodynamic predictions (P. Bożek, W. Broniowski Phys. Lett. B718,1557 (2013))

Summary

- High-precision measurements on azimuthal anisotropy in Pb+Pb and p+Pb collisions were performed by ATLAS
- Unfolded event-by-event v₂, v₃ and v₄ distributions provide direct information on relative flow fluctuations:

• $\sigma_2/\langle v_2 \rangle$ shows strong centrality dependence

- v_n distributions are not fully consistent with the eccentricity distributions from the Glauber and/or KLN MC models.
- Elliptic flow v₂{2} and v₂{4} were measured in broad range of centrality, η ($|\eta|$ <2.5) and p_T (0.5 < p_T < 12 GeV)
 - Relative fluctuations of elliptic flow from 2- and 4-particle cumulants are consistent with the MC Glauber model anf E-by-E (in 5-50% centrality bin)
- Collective flow in p+Pb?
 - Long Range azimuthal correlations (ridge) observed in p+Pb
 - Symmetric near side and away side ridge(s) with similar p_T and centrality dependence are measured
 - v_2 {4} and v_2 {2PC} show similar p_T and centrality dependence, consistent with v2 for HI collisions