Measurements of $J/\psi \rightarrow e^+e^-$ with ALICE at the LHC

F. Fionda on behalf of the ALICE Collaboration

University & INFN, Bari, Italy

INFN

1

Strangeness in Quark Matter, 21-27 July 2013

Outline

- Motivation
- The ALICE detector at the LHC
 - $J/\psi \rightarrow e^+e^-$ reconstruction
- Results:
 - pp collisions at \sqrt{s} = 7 TeV and \sqrt{s} = 2.76 TeV
 - Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - Prospects for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
- Conclusions

Motivation (1)

- pp collisions:
 - Test of QCD-based models (CEM, CSM, NRQCD) in a new energy domain
 - Measure the beauty production cross section (J/ $\psi \leftarrow$ B) at low p_{τ}
 - Reference for Pb-Pb collisions

p-Pb collisions:

F. Fionda

 Understand Cold Nuclear Matter (CNM) effects (e.g. Nuclear Parton Shadowing)

Motivation (2)

- Pb-Pb collisions:
 - $c\overline{c}$ pairs produced at the early stage of the collision \rightarrow sensitive to the full QGP history
 - J/ ψ suppression via Colour Debye Screening
 - T. Matsui and H. Satz, Phys. Lett. **B178**, 416 (1986).
 - → historical QGP signature
 - Regeneration mechanisms
 - P. Braun-Munzinger and J. Stachel, Phys. Lett. B490, 196 (2000)

R.L. Thews, M. Schroedter, and J. Rafelski, Phys. Rev. C63, 054905 (2001). New QGP signature at LHC energies → can counteract suppression

4

– Study of beauty production via displaced J/ψ

The ALICE detector at the LHC

ATT_DEDE_20070

- Kinematic cuts: |y^{J/ψ}|<0.9, p₁>0.85 - 1.0 GeV/c, |η^e|<0.9
- Tracking: Inner Tracking System (ITS) + Time Projection Chamber (TPC)
 - Removal of electrons from gamma conversion
- PID:
 - Energy loss measurements dE/dx in TPC

- Good impact parameter resolution in the transverse plane (~60 μ m for p_{τ} =1 GeV/c)
 - allows the study of J/ ψ detached from primary vertex, coming from B hadrons decays ($c\tau_{_{\rm B}} \sim 500 \mu$ m) ⁶

Results in proton-proton collisions

Inclusive J/ψ cross section in pp

• down to $p_{\tau} = 0$

- kinematical coverage complementary to the one of CMS and ATLAS
- pp at $\sqrt{s} = 2.76$ TeV \rightarrow reference for Pb-Pb analyses

Non-prompt J/ ψ fraction in pp at $\sqrt{s} = 7$ TeV

 Separation of prompt and non-prompt J/ψ in 4 *p*₊ bins using the <u>pseudoproper decay length</u>:

$$x = \frac{c \cdot L_{xy} \cdot m_{J/\psi}}{p_t^{J/\psi}} \quad L_{xy} = \vec{L} \cdot \vec{p}_t^{J/\psi} / p_t^{J/\psi}$$

 Prompt and non-prompt J/ψ yields measured also as a function of charged particle multiplicity (→ see Renu Bala's talk on Thursday)

• Non-prompt J/ ψ fraction f_B measured for $p_T > 1.3 \text{ GeV/}c$

 $f_{\rm B} = 0.149 \pm 0.037 \,(\text{stat.})^{+0.018}_{-0.027} \,(\text{syst.})^{+0.025 \,(\lambda_{\rm HE}=1)}_{-0.021 \,(\lambda_{\rm HE}=-1)} \,(\text{syst.pol.})$

• prompt J/ ψ cross section measured for $p_{\tau} > 0$:

 Good agreement for prompt J/ψ cross section with NRQCD calculations

$$\frac{\mathrm{d}\sigma_{\text{prompt J/\psi}}}{\mathrm{d}y} = 5.89 \pm 0.60(\mathrm{stat.})^{+0.88}_{-0.90}(\mathrm{syst.})^{+0.03}_{-0.01}(\mathrm{extr.})^{+1.01(\lambda_{\text{HE}}=1)}_{-0.99(\lambda_{\text{HE}}=-1)}\,\mu\,\mathrm{b}y$$

Non-prompt J/ ψ in pp at $\sqrt{s} = 7$ TeV

ALICE: JHEP **11**, 065 (2012).

- Non-prompt J/ ψ and beauty production cross sections extrapolated down to $p_{\tau} = 0$ at mid-rapidity, using FONLL predictions [M. Cacciari et al., JHEP **07**, 033 (2004).]
 - total beauty cross section from FONLL extrap.:

 $\sigma(pp \rightarrow b\bar{b} + X) = 282 \pm 74(\text{stat.})^{+58}_{-68}(\text{syst.})^{+8}_{-7}(\text{extr.}) \,\mu b$

Results in Pb-Pb collisions

$J/\psi \rightarrow e^+e^-$ analysis in Pb-Pb

- Inclusive J/ψ analysis:
 - y|<0.9, p_⊥>0
 - R_{AA} measured in three centrality classes:

$$R_{AA} = \frac{d^2 N_{AA} / dp_T dy}{N_{coll} \times d^2 N_{pp} / dp_T dy}$$

• Fraction of non-prompt J/ ψ studied for $p_{\tau}>2$ GeV/c as a function of centrality

• Outlook:

- R_{AA} as a function of transverse momentum
- $\checkmark R_{_{AA}}$ for prompt and non-prompt J/ $\!\psi$ $_{13}$

Inclusive J/ ψ R_{AA} vs centrality

 Indication for reduced suppression for most central collisions w.r.t. PHENIX (similar behaviour at forward rapidity → see Lizardo Palomo's talk)

- Models which consider the (re)combination of deconfined charm pairs from the QGP are in agreement with data albeit with large uncertainties of the charm cross section
- p-Pb results are necessary to measure gluon shadowing in the Pb nucleus

Non-prompt J/ ψ fraction (1)

- Non-prompt J/ ψ fraction measured in Pb-Pb for $2 < p_{\tau} < 10$ GeV/c in three different centrality classes
- Pseudoproper decay length and inv. mass distributions with the projection of the maximum likelihood fit superimposed

Non-prompt J/ ψ fraction (2) <u>_</u> 0.5 0.45 0.9 <mark>- →</mark> CMS PbPb, √s_{NN}=2.76 TeV |y|<2.4, 0-100% $2 < p_{_{T}} < 10 \text{ GeV}/c$ ALICE pp, \sqrt{s} =7 TeV, |y_{1/10}|<0.9 0.4 \bigtriangledown ATLAS pp, $\sqrt{s}=7$ TeV, $|y|_{V_{M}} < 0.75$ 0.8 ■ CMS pp, √*s*=7 TeV, |y_{1/y}|<0.9 0.35 0.7 CDF pp, √s=1.96 TeV, |y_{1/y}|<0.6 </p> 0.3 0.6 0.25 0.5 0.2 0.4 0.15 0.3 0.1 0.2 0.05 0.1

0

ALI-PREL-51325

LI-PREL-51321

F. Fionda

0

10

Error bars: statistical uncertainties Boxes: systematics

40

50

60

70

centrality(%)

80

30

20

- No significant dependence of fraction of non-prompt J/ ψ f_R on centrality

• f_{B} in centrality class 0-80% measured at low $p_{T} \rightarrow ALICE p_{T}$ coverage complementary to the one of CMS

10

• Evidence of similar trend of $f_{_B}$ as a function of $p_{_T}$ in pp and Pb-Pb

16

p_ (GeV/c)

Prospects for p-Pb collisions

- Minimum-bias (~50µb⁻¹) + TRD triggered (trigger on single electron) events (~1.4nb⁻¹)
- Good detector performances for both tracking and PID
- Good quality measurements expected soon

Conclusions

- pp collisions:
 - − Inclusive J/ψ cross section measured at mid rapidity down to $p_{\tau} = 0$ at $\sqrt{s} = 7$ TeV and at $\sqrt{s} = 2.76$ TeV → unique at LHC
 - Cross section measured at $\sqrt{s} = 2.76$ TeV used as reference for Pb-Pb
 - − Prompt and non-prompt J/ψ separated down to p_{τ} = 1.3 GeV/*c* at √s = 7 TeV; nonprompt J/ψ and beauty production cross sections also measured down to p_{τ} =0
- Pb-Pb collisions

- Nuclear suppression factor R_{AA} measured at mid-rapidity for $p_T > 0$ as a function of centrality:
 - Indications of (re)generation of J/ψ from deconfined charm quarks (confirmed also by results at forward rapidity)
 - Analysis of p-Pb collisions will help to understand Pb-Pb results
- Non-prompt J/ ψ fraction measured for p_{τ} >2 GeV/*c* as a function of centrality:
 - No significant dependence on centrality
 - suggestion of a similar trend of non-prompt J/ ψ fraction f_B as a function of $p_{_{\rm T}}$ for pp and Pb-Pb
 - Outlook: R_{AA} for prompt and non-prompt J/ ψ at low p_{T} soon

Back-up

Systematics on non-prompt J/Ų fraction

Centr.	F _{Bkg} (x)	^(*) R(x)	^(*) MC <i>p</i> _т	Mass (Bkg)	^(*) Mass (Sig)	^(*) χ _Β (x)	Tot.
0-10%	±22%	±15%	±4%	±6%	±4%	±4%	28.2%
10-40%	±10%	±10%	±4%	±3%	±3%	±3%	15.6%
40-80%	±5%	±5%	±4%	±1%	±1%	±2%	8.5%

- Pseudoproper decay length background shape $F_{bkg}(x)$ under the signal region
- Resolution function R(x) for prompt J/ ψ description
- p_{T} spectra to describe prompt and non-prompt J/ ψ to get the "corrected" f_{R}
- Invariant mass:
 - m_{ee} signal shape
 - m background shape
- MC-truth pseudoproper decay length distribution for non-prompt J/ ψ ($\chi_{B}(x)$)
- Primary vertex (negligible)

^(*) contributions correlated with centrality