Charmonium production measurements in Pb-Pb collisions with ALICE at the LHC

Lizardo Valencia Palomo

14th International Conference on Strangeness in Quark Matter Birmingham, United Kingdom

Physics motivation

The ALICE detector

 $J/\psi \rightarrow \mu\mu \ (2.5 < y < 4.0):$ $\Box \text{ Analysis}$ $\Box \text{ Results}$

 $\psi(2S) \rightarrow \mu\mu (2.5 < y < 4.0):$ \Box Analysis \Box Results

Conclusions

- Ultrarelativistic heavy-ion collisions \rightarrow high energy densities.
- Quark-Gluon-Plasma: deconfined state of quarks and gluons.

Charmonium as a probe of deconfinement:

- \checkmark Created in the early stages of the collision.
- ✓ Suppressed by Debye screening. PLB 178(1986) 416
- ✓ Different radii & binding energies → sequential suppression.


```
PRD 64(2001) 094015
```

- Ultrarelativistic heavy-ion collisions → high energy densities.
- Quark-Gluon-Plasma: deconfined state of quarks and gluons.

Charmonium as a probe of deconfinement:

- \checkmark Created in the early stages of the collision.
- ✓ Suppressed by Debye screening. PLB 178(1986) 416
- ✓ Different radii & binding energies → sequential suppression.

Charmonium production in A-A previously studied by various experiments:

$$R_{\rm AA} = \frac{Y_{\rm A-A}^{J/\psi}}{\langle N_{\rm Coll} \rangle Y_{\rm pp}^{J/\psi}}$$

 RHIC & SPS: significant J/ψ suppression beyond the Cold Nuclear Matter effects.

PRD 64(2001) 094015

- Ultrarelativistic heavy-ion collisions \rightarrow high energy densities.
- Quark-Gluon-Plasma: deconfined state of quarks and gluons.

Charmonium as a probe of deconfinement:

- \checkmark Created in the early stages of the collision.
- ✓ Suppressed by Debye screening. PLB 178(1986) 416
- ✓ Different radii & binding energies \rightarrow sequential suppression.

Charmonium production in A-A previously studied by various experiments:

$$R_{\rm AA} = \frac{Y_{\rm A-A}^{J/\psi}}{\langle N_{\rm Coll} \rangle Y_{\rm pp}^{J/\psi}}$$

- RHIC & SPS: significant J/ψ suppression beyond the Cold Nuclear Matter effects.
- RHIC: larger suppression at forward than at mid rapidity.

PRD 64(2001) 094015

- Ultrarelativistic heavy-ion collisions → high energy densities.
- Quark-Gluon-Plasma: deconfined state of quarks and gluons.

Charmonium as a probe of deconfinement:

- \checkmark Created in the early stages of the collision.
- ✓ Suppressed by Debye screening. PLB 178(1986) 416
- ✓ Different radii & binding energies → sequential suppression.

PRD 64(2001) 094015

What can we expect at the LHC?

- New collision energy regime
 larger suppression?
- $N_{c\bar{c}}$ /central collision $\approx 10 \times \text{RHIC}$

→ new source of J/ ψ production from recombination of $c\bar{c}$ pairs?

Energy Density

The ALICE detector

The ALICE detector

The ALICE detector

pp reference and Pb-Pb data set

pp collisions: results at \sqrt{s} = 7 and 2.76 TeV.

2.5 < y < 4.0: NRQCD calculations describe the measured $d^2\sigma/dydp_T$ at \sqrt{s} = 7 and 2.76 TeV.

Results at \sqrt{s} = 2.76 TeV (same energy as Pb-Pb collisions) are used as reference.

pp reference is the main source of systematics in the R_{AA} : 9%.

pp reference and Pb-Pb data set

pp collisions: results at \sqrt{s} = 7 and 2.76 TeV.

2.5 < y < 4.0: NRQCD calculations describe the measured $d^2\sigma/dydp_T$ at \sqrt{s} = 7 and 2.76 TeV.

Results at \sqrt{s} = 2.76 TeV (same energy as Pb-Pb collisions) are used as reference.

pp reference is the main source of systematics in the R_{AA} : 9%.

 J/ψ , $\psi(2S) \rightarrow \mu\mu$ in **Pb-Pb collisions**:

Dimuon events from the muon trigger, $L_{int} \approx 70 \ \mu b^{-1}$.

Centrality estimation is based on a Glauber model fit of the V0 amplitude.

$J/\psi \to \mu\mu$ in Pb-Pb: analysis

Yield extracted by fitting the invariant mass spectrum of unlike-sign dimuons:

- Signal: modified Crystal Ball with different line shapes.
- Background: different functions with and w/o background subtraction (event mixing technique).

Results are then combined to extract a weighted mean $N_{J/\psi}$ and the systematic uncertainties on signal extraction.

$J/\psi \to \mu \mu$ in Pb-Pb: analysis

Yield extracted by fitting the invariant mass spectrum of unlike-sign dimuons:

- Signal: modified Crystal Ball with different line shapes.
- Background: different functions with and w/o background subtraction (event mixing technique).

Results are then combined to extract a weighted mean $N_{J/\psi}$ and the systematic uncertainties on signal extraction.

$J/\psi \to \mu \mu$ in Pb-Pb: analysis

Yield extracted by fitting the invariant mass spectrum of unlike-sign dimuons:

- Signal: modified Crystal Ball with different line shapes.
- Background: different functions with and w/o background subtraction (event mixing technique).

Results are then combined to extract a weighted mean $N_{J/\psi}$ and the systematic uncertainties on signal extraction.

Acceptance x efficiency values are obtained by embedding MC J/ ψ into real events.

Weak centrality dependence.

26/07/2013

20

30

50

60

40

80

Centrality (%)

70

Results: J/ ψ R_AA vs centrality

• No significant centrality dependence for $N_{part} > 70$.

Results: J/ ψ R_AA vs centrality

- No significant centrality dependence for $N_{part} > 70$.
- $R_{AA}^{ALICE} \sim 3 \ge R_{AA}^{PHENIX}$ for N_{part} > 250.

Results: J/ ψ R_AA vs centrality

- No significant centrality dependence for N_{part} > 100.
- $R_{AA}^{ALICE} \sim 3 \ge R_{AA}^{PHENIX}$ for N_{part} > 250.
- Statistical Hadronisation Model: prediction for two $d\sigma_{c\bar{c}}/dy$ in Pb-Pb.
- Transport Models: different rate equations of J/ψ dissociation and regeneration in QGP.
- Shadowing plus comovers plus recombination model. arXiv:1210.3209
- Need to measure $\sigma_{c\bar{c}}$.

Results: J/ ψ R_AA vs centrality, y bins

 R_{AA} decreases by 40% from y = 2.5 to y = 4.

Similar centrality behavior for different forward rapidity ranges.

Results: J/ ψ R_AA vs centrality, y bins

 R_{AA} decreases by 40% from y = 2.5 to y = 4.

Similar centrality behavior for different forward rapidity ranges.

Shadowing + comovers + recombination model does not reproduce the data for 3.5 < y < 4.

A measurement of the Cold Nuclear Matter effects is needed!

Igor Lakomov's talk

Results: J/ ψ R_{AA} vs centrality, p_T bins

- No centrality dependence for $low-p_T J/\psi$ (0 < p_T < 2 GeV/c) when N_{part} > 100.
- Stronger suppression for high- p_T J/ ψ (5 < p_T < 8 GeV/c).

Results: J/ ψ R_{AA} vs centrality, p_T bins

- No centrality dependence for $low-p_T J/\psi$ (0 < p_T < 2 GeV/c) when N_{part} > 100.
- Stronger suppression for high- p_T J/ ψ (5 < p_T < 8 GeV/c).
- Transport Models predictions in good agreement with the data:
 - □ Around 50% of the low- p_T J/ ψ in the most central collisions are produced by regeneration.
 - **□** For high- p_T J/ψ, contribution from regeneration is very small.

Results: J/ ψ R_{AA} vs p_T , centrality bins

Stronger suppression for high- $p_{T} J/\psi$.

Stronger p_{T} dependence for central collisions (0-20%).

Results: J/ ψ R_{AA} vs p_T , centrality bins

Stronger suppression for high- $p_T J/\psi$.

Very good agreement with Transport Models.

Stronger p_{T} dependence for central collisions (0-20%).

Discrepancy between model and data at low- p_{T} in peripheral collisions (40-90%).

According to Transport Models: regeneration at work in the low- p_{T} regime.

26/07/2013	Lizardo Valencia Palomo
------------	-------------------------

Results: J/ $\psi < p_{\rm T} >$

 $< p_{\rm T} >$ values were obtained by fitting

$$\frac{d^2 N}{dy dp_{\rm T}} \propto \frac{p_{\rm T}}{\left[1 + \left(p_{\rm T} / p_0\right)^2\right]^n}$$

in three

different centrality bins.

26/07/2013

Lizardo Valencia Palomo

Results: J/ $\psi < p_{\rm T} >$

 $< p_{\rm T} >$ values were obtained by fitting

$$\frac{d^2 N}{dy dp_{\rm T}} \propto \frac{p_{\rm T}}{\left[1 + (p_{\rm T} / p_0)^2\right]^n} \quad \text{in three}$$

different centrality bins.

ALICE: clear decrease of $< p_{\rm T} >$ with increasing $\rm N_{part}.$

Striking difference with respect to lower energy results (PHENIX)!

26/07/2013

 ψ (2S) analysis suffers from low statistics, both in pp and Pb-Pb.

Signal extraction only possible in 2 p_{T} bins:

- 0 < *p*_T < 3 GeV/c: 20-40%, 40-60% and 60-90%.
- 3 < *p*_T < 8 GeV/c : 0-20% and 20-60%.

S/B in Pb-Pb: between 0.01 and 0.3 from 20-40% to 60-90% centrality.

ψ (2\$) $\rightarrow \mu\mu$

ALICE used pp at \sqrt{s} = 7 TeV as reference: small \sqrt{s} and y dependence from [ψ (2S) / J/ ψ]_{pp} results by CDF, LHCb and CMS taken into account in the systematic uncertainty (~ 15%).

Dashed lines show the error on the pp reference: CMS used pp at \sqrt{s} = 2.76 TeV.

Signal extraction and MC inputs for Acceptance x Efficiency corrections are the main source of systematics (some others vanish in the double ratio).

No decisive conclusion on the $\psi(2S)$ enhancement/suppression vs N_{part} due to large statistical and systematic uncertainties.

ALICE excludes large enhancement in the most central collisions.

26/07/2013

Conclusions

- ALICE Pb-Pb results vs N_{part} show a different behavior relative to RHIC energies:
 Flat centrality dependence (N_{part} > 70).
 R_{AA}^{ALICE} ~ 3 x R_{AA}^{PHENIX} for the most central collisions.
- Stronger suppression for high- $p_T J/\psi$ relative to the low- p_T ones.
- $< p_{\rm T} >$ decreases with increasing collision centrality, opposite behavior compared to lower energy results (PHENIX).
- Comparisons to models and RHIC results point to (re)generation.
- Important to measure Cold Nuclear Matter effects and $\sigma_{c\bar{c}}$.
- $\psi(2S)$: No firm conclusion on enhancement/suppression with respect to J/ψ , but a strong enhancement in central Pb-Pb collisions seems unlikely.

The ALICE Muon Spectrometer

Located in the forward rapidity region and with a full azimuthal coverage, it is composed by:

• Absorbers:

- a) Front absorber.- Absorbs hadrons, photons and electrons.
- b) Beam shield.- Protects from particles produced at large y.
- c) Iron wall.- Absorbs hadrons that punch-through the frontal absorber.

• Magnetic dipole.- 3 T·m integrated magnetic field, bends charged particles allowing to extract the sign of their electric charge and momentum.

• Tracking chambers.- Spatial resolution, in bending coordinate, better than 100 μ m in order to identify and disentangle the Υ family (100 MeV resolution).

• Trigger chambers.- Timing resolution of 1-2 ns and latency of 700 ns (LØ trigger), can trigger likesign and unlikesign events.

R_{AA} vs Centrality, y bins

26/07/2013

Lizardo Valencia Palomo

R_{AA} vs Centrality, p_T bins

R_{AA} vs p_T , centrality bins

26/07/2013

Lizardo Valencia Palomo

Systematic uncertainties

Concept	Value (%)
Luminosity pp	1.9
R factor pp	3.0
Normalization (MUL \rightarrow MB)	2.1
Trigger	6.4
Tracking	6.0
Matching	2.0
MC input	5.0

Systematic uncertainties

Systematic uncertainties

Effect of non-prompt J/ ψ on R_{AA}

Non-prompt fraction of the inclusive J/ ψ yield in pp at mid rapidity (f_B): CDF vs CMS: increase of 5% and p_T independent.

Assume:

1. Linear increase of $f_{\rm B}(\sqrt{s})$.

$$f_{\rm B}(p_{\rm T})$$
 for \sqrt{s} = 2.76 TeV

2. It does not depend on the y region.

b-hadron suppression factor in Pb-Pb (*q*)? $R_{AA}^D \approx 0.3$ for $2 < p_T < 16$ GeV/c \rightarrow 'Dead cone effect': $R_{AA}^B > R_{AA}^D$.

0.2 < *q* < 1 is used

Effect of non-prompt J/ ψ on R_{AA}

Similar study can be carried out for R_{AA} vs y: LHCb shows $f_B(y)$ decreases with increasing rapidity.

 \rightarrow Difference between inclusive and prompt R_{AA} well within errors.

Theoretical models

Statistical hadronization

Thermal model with T=164 MeV, $\mu = 1$ MeV (from particle ratio fits). All charm produced in the initial hard-scatterings. Charmonium production at phase boundary.

Transport Model by Rapp & Zhao

Boltzman transport equation for the J/ ψ . V_{FB} adjusted to measured $dN_{ch}/d\eta$. $\sigma_{c\bar{c}}|_{y=3.25} \approx 0.5$ mb. Shadowing: 30% suppression in the most central collisions. No Croning effect and $\sigma_{Abs} = 0$. 10% of J/ $\psi \leftarrow B$ and no quenching.

Transport Model by Liu et al.

Boltzman transport equation for the J/ ψ . $\sigma_{c\bar{c}}|_{y=3.25} \approx 0.38 \text{ mb.}$ EKS98 shadowing and $\sigma_{Abs} = 0$. 10% of J/ $\psi \leftarrow B$ and R_{AA} (b) = 0.4 for all p_{T} range.

J/ψ photo-production

Clear deviation, at low- p_T for semi and peripheral collisions, to the expected J/ ψ hadro-production.

 J/ψ photo-production could be responsible of this excess.

```
More than 50% of the J/\psi from photo-production have a p_{T} in the 0-200 MeV/c range.
```

Only ~ 1% of the J/ ψ from hadro-production have a $p_{\rm T}$ < 200 MeV.

 $J/\psi < p_{\rm T}^2 >$

