

Elliptic flow of heavy-flavour decay electrons at $\sqrt{s_{NN}} = 2.76$ TeV with the ALICE detector

Tracking

chambers

Trigger

chambers

ZDC

116 m from I.P.

Muon

ABSORBER

Andrea Dubla for the ALICE collaboration

Institute of Subatomic Physics

Utrecht University, The Netherlands

Email : andrea.dubla@cern.ch

Motivation

- Heavy-quarks are produced in the early stages of heavy-ion collisions, carrying information on the full evolution of the hot and dense plasma of quarks and gluons (QGP) created in such collisions.
- Because of their large masses ,they are expected to lose less energy than light quarks and gluons. They thus provide a unique test of parton energy loss models.
- At low p_T , the elliptic flow of the heavy-flavour decay electrons is sensitive to the degree of thermalization of charm and beauty quarks in the medium. At higher p_T , the measurement of v_2 carries information on the path length dependence of in-medium parton energy loss.

ZDC

116 m from I.P.

EMCAL

HMPID

PMD

V0

ACORDE

ITS

PHOS

TOF

TRD

- Electron identification:
- TPC EMCal • TOF
- Centrality:
- **VZERO** Multiplicity
- 20-40% central Pb-Pb
- **Event Plane reconstruction**
- TPC VZERO
- **Event Selection:**
- MB trigger (2010) 2.8×10^6 events only TPC+TOF PID
- Semi-Central trigger (2011) 8×10^6 events

 d^3N

- Single-shower trigger (EMCal trigger)
 - 1.3×10^6 events

Inclusive electron v₂

The elliptic flow is the second Fourier

Dipole

Background: non heavy-flavour decay electron

- Main background sources: π^0 , η and γ conversion
- The v_2^{back} and the signal over background ratio (R_{SB}) were estimated using Monte Carlo simulation (cocktail) and invariant mass method.
- Cocktail simulation: based on the measured elliptic flow and p_T distributions of hadrons
- **Invariant mass**: based on the reconstruction of e⁺e⁻ (ULS) pairs from photonic conversions and Dalitz

coefficient of the azimuthal distribution of particle momenta in the transverse plane with respect to the symmetry plane Ψ_n .

- Different approaches to evaluate v_2 :
 - Event plane (estimator of the symmetry plane) method.
 - Multiparticle correlation methods Q-Cumulants and Scalar Product.

Agreement among the different methods and different PID procedures is observed

Heavy-flavour decay electron v₂

The heavy-flavour electron v_2 is extracted form the inclusive one after subtracting the background contribution according to the equation:

- $v_2^{HFE} = \frac{(1+R_{SB})v_2^{incl} v_2^{back}}{R}$
- < 20-40% central Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 0.3⊦ \mathbf{G}^+ v₂{2} |η|<0.7 decay **• v**₂{SP-TPC,|∆η|>0} |η|<0.7 ALICE v₂{EP-V0}ALICE Preliminary, |η|<0.7</p> PERFORMANCI 05/07/2013 0.2⊢ flavoi 10.15

~ ^{0.}

25.0 decay

0.3 1900 1900

Неаvу

B⁺⁺

Conclusions

- Good agreement is observed among the different analysis methods and electron PID selections used to evaluate the elliptic flow of electrons from • heavy-flavour hadron decays.
- The invariant mass method provides compatible results with respect to the cocktail simulation within the systematic error bars.
- Non-zero v₂ of heavy-flavour decay electrons was observed in 20- 40% Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.
- $v_2 > 0$ at low p_T (3 σ effect has been observed) indicates strong re-interaction of heavy quarks in the created hot and dense partonic medium.