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Heavy-quark observables

• Nuclear modification factor: RAA = dσAA/dpT
Nbindσpp/dpT

.

• Low pT : (partial) thermalization of heavy quarks.
• High pT : elastic collisions + bremsstrahlung⇒ energy loss.
• v2 from pT -broadening and flow of the medium.

⇒ Too many models describe RAA and v2 fairly well!

Heavy-flavor correlations:

• Properties of the energy loss model: path length dependence?
Parton mass dependence?

• Properties of the interaction inside a medium: drag coefficient, jet
quenching parameter?

• Influence of hadronization, flow contributions, etc.?



Heavy-quark propagation in the QGP
Production:

• FONLL
⇒ inclusive spectra, no information about
correlations→ equivalent to a back-to-back
initialization of QQ̄-pairs.

• Next-to-leading order QCD matrix elements
plus parton shower evolution, e. g. POWHEG
or MC@NLO
⇒ exclusive spectra, like QQ̄ correlations

Interaction with the medium

• Energy loss at high transverse momentum.

• Thermalization at low transverse momentum.

• Different interaction mechanisms: purely
collisional or collisional+radiative (+LPM).

• Longitudinal vs. transverse dynamics.

Hadronization:

• Coalescence – predominantly at small pT .

• Fragmentation – predominantly at large pT .

X. Zhu et al., PLB 647 (2007); P. B. Gossiaux et al., JPG 32 (2006); X. Zhu et al, PRL 100 (2008); Y. Akamatsu et al, PRC 80 (2009)
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MC@sHQ + EPOS

More details on our model: talk by PB Gossiaux, Fri 26/07, 2:40pm!

MC@sHQ:

• Evolution by the Boltzmann
transport equation.

• Cross sections from the QCD
Born approximation with
HTL+semi-hard propagators.

• Including a running coupling⇒
selfconsistently determined
Debye mass.

• Radiative corrections from
scalar QCD. co
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• Initial conditions from a flux
tube approach to multiple
scattering events.

• 3 + 1 d ideal fluid dynamics.

• Including a parametrization of
the equation of state from
lattice QCD.

• Finite initial radial velocity.

• Event-by-event fluctuating
initial conditions.

For calibration a global rescaling of the cross sections by a K -factor is required!

P. B. Gossiaux and J. Aichelin, PRC 78 (2008);
P. B. Gossiaux, J. Aichelin, T. Gousset and V. Guiho, J. Phys. G 37 (2010)
K. Werner, I. .Karpenko, M. Bleicher, T. Pierog and S. Porteboeuf-Houssais, PRC 85 (2012)



The traditional observables: RAA and v2

Strategy:
Require a reasonable agreement of the D-meson RAA ⇒ fix the K -factor once and for
all and study other observables, like the v2.
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• Reasonable agreement for the RAA for D mesons above pt > 5 GeV.

• Reasonable agreement for the v2 of D mesons.

• Need to include shadowing in the low pT region.

• The agreement is slightly better for purely collisional energy loss scenarios!

ALICE Nucl. Phys. A904-905 (2013); arXiv:1305.2707
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Properties of the interaction
Single scattering:

c quarks
pini|| = 25 GeV
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• pT -distribution in a single scattering:
larger 〈pT 〉 for coll+rad (K = 0.7).

• Initialize in a static, infinite medium at
temperature T with a given
longitudinal momentum, evolve
according to the Boltzmann equation
for ∆t = 0.4 fm.

• Scat. rate is larger for coll (K = 1.5)!

• pT -distribution after evolution in a
static medium: larger 〈pT 〉 for coll
(K = 1.5)!

Evolution in a medium:

c quarks
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Properties of the interaction

Average perpendicular broadening

c quarks
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Drag coefficient
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• The purely collisional scatterings lead to a larger average 〈p2
⊥〉 than the radiative

corrections.

• The final p⊥ also depends indirectly on the drag coefficients.

• The drag coefficients increases faster for the collisional+radiative interaction
scenario⇒ A quick loss in longitudinal momentum leads to less perpendicular
momentum broadening.

• Expectation: Initial correlations will be broadened more effectively in a purely
collisional interaction mechanism.



Heavy-quark azimuthal correlations
central collisions, back-to-back initialization, no background from uncorrelated pairs

charm quarks
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• Stronger broadening in a purely collisional than in a collisional+radiative
interaction mechanism

• Variances in the intermediate pT -range:
0.18 vs. 0.094 (charm) and 0.28 vs. 0.12 (bottom)

• At low pT initial correlations are almost washed out: small residual correlations
remain for the collisional+radiative mechanism, “partonic wind” effect for a
purely collisional scenario.

• Initial correlations survive the propagation in the medium at higher pT .



“Partonic wind” effect

X. Zhu, N. Xu and P. Zhuang, PRL 100 (2008)

• Due to the radial flow of the matter
low-pT cc̄-pairs are pushed into the
same direction.

• Initial correlations at ∆φ ∼ π are
washed out but additional correlations
at small opening angles appear.

• This happens only in the purely
collisional interaction mechanism!

• No “partonic wind” effect observed in
collisional+radiative interaction
mechanism!
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Realistic initial bb̄ distributions - MC@NLO
Next-to-leading order QCD matrix elements
coupled to parton shower (HERWIG) evolu-
tion: MC@NLO.
S. Frixione and B. R. Webber, JHEP 0206 (2002)
S. Frixione, P. Nason and B. R. Webber, JHEP 0308 (2003)

• Gluon splitting processes lead to an
initial enhancement of the correlations
at ∆φ ≈ 0.

• For intermediate pT : increase of the
variances from 0.43 (initial NLO) to
0.51 (∼ 20%) for the purely collisional
mechanisms and to 0.47 (∼ 10%) for
the interaction including radiative
corrections.

• Correlations at large pT seem to be
dominated by the initial correlations.

• Different NLO+parton shower
approaches agree on bottom quark
production, differences remain for
charm quark production!

pT ∈ [1− 4] GeV

10−3

10−2

0 1 2 3 4 5 6

d
N

bb̄
/
d
∆
φ

∆φ

initial
coll, K = 1.5

coll+rad, K = 0.7

pT ∈ [4− 10] GeV

10−3

10−2

0 1 2 3 4 5 6

d
N

bb̄
/
d
∆
φ

∆φ

initial
coll, K = 1.5

coll+rad, K = 0.7

pT ∈ [10− 20] GeV

10−5

10−4

10−3

10−2

0 1 2 3 4 5 6

d
N

bb̄
/
d
∆
φ

∆φ

initial
coll, K = 1.5

coll+rad, K = 0.7



Azimuthal correlations and flow
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• DD correlations, 30-50% central.

• Flow harmonics from 2-particle correlation
functions
∝ N

2π (1 + 2 ∑ Vn cos(n∆φ)).
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• Similar Vn for both interaction mechanisms at
low pT .

• Nonvanishing higher flow coefficients.



Azimuthal correlations and flow

as an example collisional, K = 1.5
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• Compare DD correlations to DD̄
correlations to learn about the flow
contribution and the degree of
isotropization of DD̄ pairs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6
√
V
2

pT [GeV]

DD

r

r

r
r r

r

r

DD

b

b

b

b

b

b

b

• Similar V2 for DD and DD̄ at low pT .

• Dominant initial back-to-back
correlation in DD̄-correlations at
higher pT .



Conclusion

• Monte-Carlo approach to in-medium heavy-quark propagation
coupled to EPOS gives a reasonable agreement for the RAA and
the v2 of D mesons at LHC.

• Heavy-quark correlation observables are a promising observable
to learn more about the in-medium energy loss:

• At small pT : the correlations in ∆φ are washed out.
• At larger pT : initially correlated QQ̄ pairs show a residual

∆φ ≈ π-correlation after propagation in the medium.
• The peak of the ∆φ correlation distribution is broader for the purely

collisional interaction mechanism than for the collisional+radiative
one due to larger average perpendicular broadening.

• Flow coefficients can be obtained from two-particle correlation
functions, higher flow harmonics could further enhance our
understanding of flow of heavy quark mesons.

• Comparison of flow of D-mesons to DD̄ correlations shows flow
contributions at low pT .

• Need a reliable proton-proton reference for initial cc̄-distributions!
• Study heavy-flavor correlations which are closer to experimental

observables!


