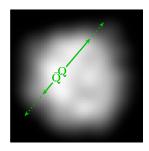
From the *R_{AA}* to azimuthal correlations: what can we learn from heavy-quark observables?

Marlene Nahrgang

SUBATECH, Nantes & Duke University, Durham & FIAS, Frankfurt

Strangeness in Quark Matter, July 2013, Birmingham UK

MN, J. Aichelin, P. B. Gossiaux, K. Werner, arXiv:1305.3823 thanks to: TOGETHER & "Van Gogh project" with Utrecht Univ.


Heavy-quark observables

- Nuclear modification factor: $R_{AA} = \frac{d\sigma_{AA}/d\rho_T}{N_{bin}d\sigma_{pp}/d\rho_T}$.
- Low p_T : (partial) thermalization of heavy quarks.
- High p_T : elastic collisions + bremsstrahlung \Rightarrow energy loss.
- v_2 from p_T -broadening and flow of the medium.
- \Rightarrow Too many models describe R_{AA} and v_2 fairly well!

Heavy-flavor correlations:

- Properties of the energy loss model: path length dependence? Parton mass dependence?
- Properties of the interaction inside a medium: drag coefficient, jet quenching parameter?
- Influence of hadronization, flow contributions, etc.?

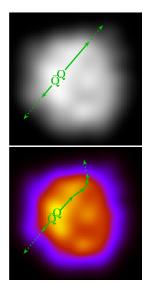
Heavy-quark propagation in the QGP

Production:

FONLL

 \Rightarrow inclusive spectra, no information about correlations \rightarrow equivalent to a back-to-back initialization of $Q\bar{Q}\text{-pairs.}$

- Next-to-leading order QCD matrix elements plus parton shower evolution, e. g. POWHEG or MC@NLO
 - \Rightarrow exclusive spectra, like $Q\bar{Q}$ correlations


Interaction with the medium

- Energy loss at high transverse momentum.
- Thermalization at low transverse momentum.
- Different interaction mechanisms: purely collisional or collisional+radiative (+LPM).
- Longitudinal vs. transverse dynamics.

Hadronization:

- Coalescence predominantly at small p_T .
- Fragmentation predominantly at large p_T.

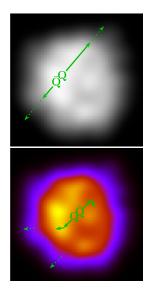
Heavy-quark propagation in the QGP

Production:

FONLL

 \Rightarrow inclusive spectra, no information about correlations \rightarrow equivalent to a back-to-back initialization of $Q\bar{Q}\text{-pairs.}$

- Next-to-leading order QCD matrix elements plus parton shower evolution, e. g. POWHEG or MC@NLO
 - \Rightarrow exclusive spectra, like $Q\bar{Q}$ correlations


Interaction with the medium

- Energy loss at high transverse momentum.
- Thermalization at low transverse momentum.
- Different interaction mechanisms: purely collisional or collisional+radiative (+LPM).
- Longitudinal vs. transverse dynamics.

Hadronization:

- Coalescence predominantly at small p_T .
- Fragmentation predominantly at large p_T .

Heavy-quark propagation in the QGP

Production:

FONLL

 \Rightarrow inclusive spectra, no information about correlations \rightarrow equivalent to a back-to-back initialization of $Q\bar{Q}$ -pairs.

- Next-to-leading order QCD matrix elements plus parton shower evolution, e. g. POWHEG or MC@NLO
 - \Rightarrow exclusive spectra, like $Q\bar{Q}$ correlations

Interaction with the medium

- Energy loss at high transverse momentum.
- Thermalization at low transverse momentum.
- Different interaction mechanisms: purely collisional or collisional+radiative (+LPM).
- Longitudinal vs. transverse dynamics.

Hadronization:

- Coalescence predominantly at small p_T .
- Fragmentation predominantly at large p_T .

MC@sHQ + EPOS

More details on our model: talk by PB Gossiaux, Fri 26/07, 2:40pm!

coupling

┥

consistent 1

MC@sHQ:

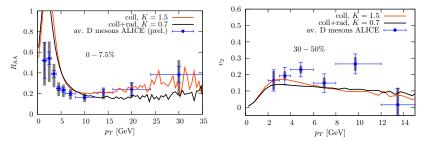
- Evolution by the Boltzmann transport equation.
- Cross sections from the QCD Born approximation with HTL+semi-hard propagators.
- Including a running coupling ⇒ selfconsistently determined Debye mass.
- Radiative corrections from scalar QCD.

EPOS:

- Initial conditions from a flux tube approach to multiple scattering events.
- 3+1 d ideal fluid dynamics.
- Including a parametrization of the equation of state from lattice QCD.
- Finite initial radial velocity.
- Event-by-event fluctuating initial conditions.

For calibration a global rescaling of the cross sections by a K-factor is required!

P. B. Gossiaux and J. Aichelin, PRC 78 (2008);

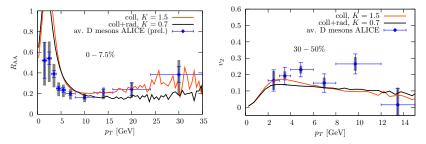

K. Werner, I. .Karpenko, M. Bleicher, T. Pierog and S. Porteboeuf-Houssais, PRC 85 (2012)

P. B. Gossiaux, J. Aichelin, T. Gousset and V. Guiho, J. Phys. G 37 (2010)

The traditional observables: R_{AA} and v_2

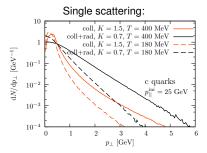
Strategy:

Require a reasonable agreement of the D-meson $R_{AA} \Rightarrow$ fix the *K*-factor once and for all and study other observables, like the v_2 .

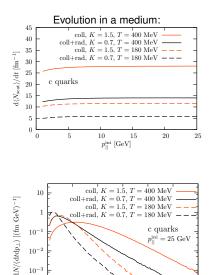


- Reasonable agreement for the R_{AA} for D mesons above $p_t > 5$ GeV.
- Reasonable agreement for the v₂ of D mesons.
- Need to include shadowing in the low p_T region.
- The agreement is slightly better for purely collisional energy loss scenarios!

The traditional observables: R_{AA} and v_2


Strategy:

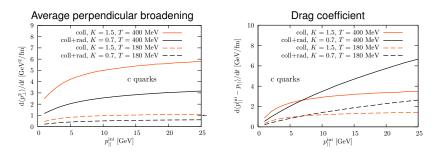
Require a reasonable agreement of the D-meson $R_{AA} \Rightarrow$ fix the *K*-factor once and for all and study other observables, like the v_2 and heavy-flavor correlations!


- Reasonable agreement for the R_{AA} for D mesons above p_t > 5 GeV.
- Reasonable agreement for the v₂ of D mesons.
- Need to include shadowing in the low p_T region.
- The agreement is slightly better for purely collisional energy loss scenarios!

Properties of the interaction

 p_T-distribution in a single scattering: larger $\langle p_T \rangle$ for **coll+rad** (K = 0.7).

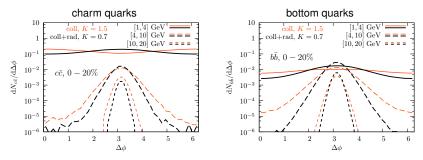
- Initialize in a static, infinite medium at temperature T with a given longitudinal momentum, evolve according to the Boltzmann equation for $\Delta t = 0.4$ fm.
- Scat. rate is larger for coll (K = 1.5)!
- *p_T*-distribution after evolution in a static medium: larger $\langle p_T \rangle$ for coll (K = 1.5)!


5

 10^{-3}

 10^{-4}

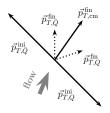
1 2 3 p_{\perp} [GeV]

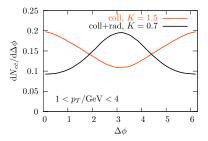

Properties of the interaction

- The purely collisional scatterings lead to a larger average $\langle p_{\perp}^2\rangle$ than the radiative corrections.
- The final p_{\perp} also depends indirectly on the drag coefficients.
- The drag coefficients increases faster for the collisional+radiative interaction scenario ⇒ A quick loss in longitudinal momentum leads to less perpendicular momentum broadening.
- Expectation: Initial correlations will be broadened more effectively in a purely collisional interaction mechanism.

Heavy-quark azimuthal correlations

central collisions, back-to-back initialization, no background from uncorrelated pairs

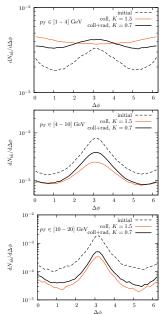



- Stronger broadening in a purely collisional than in a collisional+radiative interaction mechanism
- Variances in the intermediate p_T-range: 0.18 vs. 0.094 (charm) and 0.28 vs. 0.12 (bottom)
- At low p_T initial correlations are almost washed out: small residual correlations remain for the collisional+radiative mechanism, "partonic wind" effect for a purely collisional scenario.
- Initial correlations survive the propagation in the medium at higher p_T.

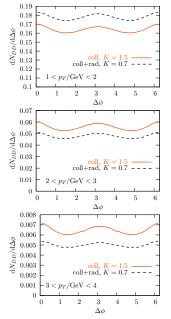
"Partonic wind" effect

X. Zhu, N. Xu and P. Zhuang, PRL 100 (2008)

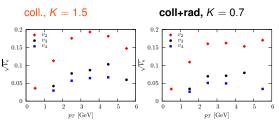
- Due to the radial flow of the matter low-p_T cc-pairs are pushed into the same direction.
- Initial correlations at Δφ ~ π are washed out but additional correlations at small opening angles appear.
- This happens only in the purely collisional interaction mechanism!
- No "partonic wind" effect observed in collisional+radiative interaction mechanism!



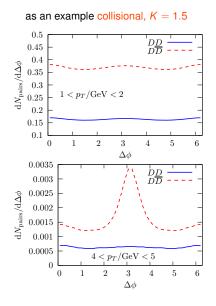
Realistic initial *bb* distributions - MC@NLO


Next-to-leading order QCD matrix elements coupled to parton shower (HERWIG) evolution: MC@NLO.

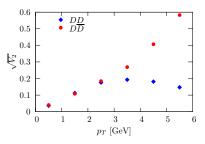
S. Frixione and B. R. Webber, JHEP **0206** (2002) S. Frixione, P. Nason and B. R. Webber, JHEP **0308** (2003)


- Gluon splitting processes lead to an initial enhancement of the correlations at $\Delta \phi \approx 0$.
- For intermediate p_T: increase of the variances from 0.43 (initial NLO) to 0.51 (~ 20%) for the purely collisional mechanisms and to 0.47 (~ 10%) for the interaction including radiative corrections.
- Correlations at large p_T seem to be dominated by the initial correlations.
- Different NLO+parton shower approaches agree on bottom quark production, differences remain for charm quark production!

Azimuthal correlations and flow



- DD correlations, 30-50% central.
- Flow harmonics from 2-particle correlation functions
 - $\propto \frac{N}{2\pi}(1+2\sum V_n\cos(n\Delta\phi)).$



- Similar *V_n* for both interaction mechanisms at low *p_T*.
- Nonvanishing higher flow coefficients.

Azimuthal correlations and flow

 Compare DD correlations to DD correlations to learn about the flow contribution and the degree of isotropization of DD pairs.

- Similar V_2 for DD and $D\overline{D}$ at low p_T .
- Dominant initial back-to-back correlation in *DD*-correlations at higher p_T.

Conclusion

- Monte-Carlo approach to in-medium heavy-quark propagation coupled to EPOS gives a reasonable agreement for the R_{AA} and the v₂ of D mesons at LHC.
- Heavy-quark correlation observables are a promising observable to learn more about the in-medium energy loss:
 - At small p_T : the correlations in $\Delta \phi$ are washed out.
 - At larger p_T : initially correlated $Q\bar{Q}$ pairs show a residual $\Delta \phi \approx \pi$ -correlation after propagation in the medium.
 - The peak of the $\Delta \phi$ correlation distribution is broader for the purely collisional interaction mechanism than for the **collisional+radiative** one due to larger average perpendicular broadening.
 - Flow coefficients can be obtained from two-particle correlation functions, higher flow harmonics could further enhance our understanding of flow of heavy quark mesons.
 - Comparison of flow of D-mesons to DD correlations shows flow contributions at low p_T.
- Need a reliable proton-proton reference for initial *cc*-distributions!
- Study heavy-flavor correlations which are closer to experimental observables!