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Why we need HG EOS ?

  
 Whether QGP or not, HG is always present 
 -   Chemical and thermal equilibrium achieved or not.

 To devise any unique signal for the formation of QGP phase we need to        
      understand the behaviour and properties of hot, dense HG         
     (because it forms the background).
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The basic condition to apply Statistical Thermal Model for any system is that the system 
should be in thermodynamical equilibrium.

Statistical Thermal Model 

Ideal HG EOS  :

( ) ∫
∞

−



0

2
2

0

1exp

1

2π
T

μE
dkk

g
=n

ii

i
mesonici 

( ) ∫
∞





0

2
2

0

1exp

1

2π
+

T

μE
dkk

g
=n

ii

i
baryonici 

Ref.:  Andronic et al., Nucl. Phys. A, 772, 167 (2006).

Shortcomings of Ideal HG Model :
Construction of first-order Phase Transition 

( Gibb’s criteria) : P
Q
 (T

C
, µ

C
) = P

H
 (T

C
, µ

C
)  

HG reappears as a stable phase after       again.P2

P1

P2

2
ii m+k=E 2

μ=B×μB+S×μS

Where                                 is the energy, k is the momentum and g
i
 is the 

degeneracy factor of the ith particle.

Here

Inclusion of resonances- Attractive Forces (Welke, Venugopalan 
& Prakash, Phys. Lett. B 245, 137 (1990).) 

Inclusion of Finite size particles- Repulsive Interactions-
                 Excluded-Volume Model 4



Hagedorn Model 

In the Hagedorn model it is assumed that the excluded-volume correction is 
proportional to the  energy density     of the system of pointlike particles so that  :
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Ref. : R. Hagedorn,  Z. Phys. C 17, 265 (1983).
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Cleymans-Suhonen Model 

Therefore, the volume for each baryon is :
3

4 3
0 r

Vi
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Cleymans et al. adopted a hard sphere picture for a baryon.

Ref. : J. Cleymans and E. Suhonen,  Z. Phys. C 37, 51 (1987).
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Rischke, Gorenstein, Stocker and Greiner (RGSG)  Model 

The question of thermodynamic consistency was first examined in detail by 

Rischke et al. They have proposed a thermodynamical consistent model.
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Ref. : D. H. Rischke et al., Z. Phys. C 51, 485 (1991).
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Features of Our EOS 

 We assign an equal hard-core volume to each baryon to incorporate the 
repulsive interaction between baryons. Mesons, although they possess a 
small volume, can penetrate into each other. 

 The attractive interaction between hadrons are realized by including 
resonances in our model upto 2.5 GeV/c2.
 
 We use full statistics  in grand canonical partition function in a 
thermodynamically consistent  way so that our model works even at 
extreme temperature and/or densities.

 Numerical calculation indicates that the causal behaviour is fulfilled in 
our model even at extreme densities (         ).cs

2
<1
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EOS for HG 

Where g i is the degeneracy factor of ith species of baryon, E is the energy of the 
particle V0

i is the eigen volume of one ith species of baryon and                        is 
the total volume occupied . 
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The Grand canonical partition function using full statistics and including 
excluded volume correction in a thermodynamically consistent manner is :

Ref. : C.P.Singh,P.K.Srivastava and S.K.Tiwari, Phys.Rev.D 
80,114508(2009)
         P.K.Srivastava,S.K.Tiwari and C.P.Singh, Phys.Rev.D 
82,014023(2010)

Ref. : S. K. Tiwari, P. K. Srivastava, and C. P. Singh, Phys. Rev. C 85, 014908 (2012).
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Using the basic thermodynamical relation between number density and  
partition function we can get :   

is the fractional volume occupied. We can write R in an 
operator form as :

R=∑
i

n i
exV i
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nex
j  is  the number density of jth type of baryons after excluded volume 

correction.
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(+) sign is used for particles and  (-) sign is used for anti- particles.
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where with

and the operator

By calculating     we can 

calculate       . 
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After solving above equations  and using basic thermodynamical relations we can 
get the pressure of baryons as follows : 
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Using Neumann iteration method, we get after truncation upto     term
(further terms give small contribution) :-

Using Neumann iteration method, we get after truncation up to 2nd order term  :

By calculating     we can calculate       .  
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Similarly we can calculate no. density of mesons by using following formula:
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The pressure due to mesons is given by :
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Total Number Density :
Total no. density of hadrons can be given as follows :
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Hadronic Pressure :
Pressure due to hadrons can be calculated by using the following formula :
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Thermodynamical and Statistical Consistency 
In RGSG model, NN = EE =

Ref. : M. I. Gorenstein, Phys. Rev. C 86, 044907 (2012).
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 arXiv: 1306.3291 [hep-ph].

Fig : Variation of thermodynamical average of no. 
density of baryons and correction term with 
respect to temperature at constant baryon chemical 
potential =400 MeV .

Correction term
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Ref. : S. K. Tiwari et al., Phys. Rev. C 85, 014908 (2012); arXiv: 1306.3291 [hep-ph] .

Causality 

Fig : Variation of Hadronic Pressure with 
respect to energy density of hadrons at 
constant s/n 

Fig : Variations of speed of sound with 
respect to s/n.  

If the medium transmits the information with the speed greater than the speed of 
light then the causality violates.
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Chemical Freeze-out Parameters 

Ref. : S. K. Tiwari, and C. P. Singh,  
arXiv: 1306.3291 [hep-ph].
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Why Strangeness is so Important ? 

 Strangeness  enhancement is an important signature of QGP formation .
    J. Rafelski and B. Müller, PRL48,  1066 (1982)
        P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986)
        C. P. Singh, Phys. Rep. 236, 147 (1993); Int. J. Mod. Phys. A 7, 7185             

   (1992).

 The production threshold for the associated production of strangeness via 
strange- antistrange quark pairs is considerably smaller than the one for 
hadrons.

 Strange flavour is not present at the beginning of the heavy-ion collisions, it 
has to be produced in the reaction.

.

15



 Strange and Non-strange Hadrons 

Fig. : Variation of hadrons ratios with respect to center-of-mass energies.  
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Fig. : Variation of various hadrons ratios with respect to center-of-mass energies.  

Thermal model fails to describe the production of the particles with hidden-
strange quarks e. g. phi meson.
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Light Nuclei, Hypernuclei and their Anti-nuclei 

 Ultra-relativistic heavy-ion collisions offer a best way to study the production of 
light nuclei, hypernuclei and their antinuclei.

 The production of light nuclei and hypernuclei is entirely based on the entropy 
conservation which constitute the basis for the thermal model analysis for the 
yields of these particles 

 The analysis of the production of light nuclei, hypernuclei and their antinuclei 
throws light on the understanding of the creation of matter-antimatter 
asymmetry arising in the early universe and also the strength of nuclear 
interaction for the antinuclei.

 Such analysis hints about the degree of  thermalization for heavy nuclei in the 
fireball created after the heavy-ion collisions.
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Fig. : center-of-mass energy dependence of various ratios of light nuclei, Hypernuclei 
and their antinuclei.

Our model describes the experimental data on the ratio of light nuclei, hypernuclei and 
their antinuclei over a broad energy range from SIS energies to RHIC energy.
Fails in case of mixed ratios          New production mechanism needed which              
                                           is not contained in the thermal approach 

Ref. : S. K. Tiwari, P. K. Srivastava, and C. P. Singh, J. Phys. G 40, 045102 (2013).
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Rapidity Distributions
Thermal Model :

20

( )[ ] ( )[ ] 







+

−−
+∂

∂−−=





∫∫
∞∞

0
2

2

0

2

2 coshexp

cosh
)1(

coshexp

cosh
))1((

)2( iT

TT
i

iT

TT

i
i

ii

th

i

Tym

ydmm
R

Tym

ydmmR
R

Vg

dy

dN

λ
λ

λλ
λ

π
λ

Ref. : S. K. Tiwari, P. K. Srivastava, and C. P. Singh, J. Phys. G 40, 045102 (2013).
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Thermal Model + Flow :

where
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Transverse Mass Spectra 

Thermal Model :

Thermal Model + Flow :

where

Ref. : S. K. Tiwari, P. K. Srivastava, and C. P. Singh, J. Phys. G 40, 045102 (2013).
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Ref. : S. K. Tiwari, P. K. Srivastava, and C. P. Singh, J. Phys. G 40, 045102 (2013).

Fig. : Transverse mass spectra of various particles at centre-of-mass energy of 200 GeV.
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Elliptic Flow of Hadrons  
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Fig. : Elliptic flow of hadrons with 
respect to transverse momentum at 
center-of-mass energy of 200 GeV.



Conclusions :

 We have proposed an (approximately thermodynamically consistent) excluded-volume 
model which works even at extreme values of temperature and baryon chemical potential 
where other excluded-volume models fail.

 Our model provides a suitable description of the experimental data on the midrapidity 
yields, rapidity as well as transverse mass spectra, elliptic flow, ratios etc. of various 
hadrons obtained at various centre-of-mass energies.

  Our model describes the production of strange particles and hypernuclei successfully 
but fails in case of particles with hidden-strange quark combinations which suggests a 
different kind of production mechanism for these particles (e.g. , quark coalescence 
model).

Our model provides a proper and more realistic EOS for a hot and dense 

HG.

                                              25



Thank You
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Back-up Slides
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Backup :

Space-Time Evolution of System in Ultra- Relativistic Heavy Ion 

Collision

Pre equilibrium stage            At (z,t) =(0,0), nuclei collides and pass through  each other, nucleons 

interact with each other.

Formation stage            Quarks and gluons (qq,gg) are produced in the central  region             a 

large amount of energy is deposited.                                                                                    

Equilibration                Due to parton interaction plasma evolves from formation stage to a 

thermalized QGP.         

Hadronization             Thermalized plasma expands and cools until                 hadronization takes 

place and mesons and baryons are  created.

Freeze-out                 When temperature falls further, the hadrons no longer interact and they 

stream out of the collision region

    towards the detectors.

Chemical freeze-out             when inelastic scattering cease

Thermal or Kinetic freeze-out           when elastic interactions cease                                        
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Energy Density of Hadrons :
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Therefore, the volume for each baryon is :

After the excluded volume correction the number density, pressure and the 

energy density for ith hadron is given as below :

here                are the number 
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density for pointlike particles 
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Cleymans-Suhonen Model :

Solves the problem of stability of 

QGP phase at higher densities

P
1
 is the only one critical point.
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 The above model involves cumbersome, transcendental expressions. 

  They use the available volume as (V-v0N) where N is a fixed number. 

 This model fails ambiguously at             .       μ=0

Demerits of above model :
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Thermodynamical 
Properties :

URASiMA              includes realistic 
interaction and based on molecular 
dynamical simulations for a system of 
HG.

          Includes the multibody absorptions  
                   

       reverse process of multiparticle           
      production s

Ref. : S. K. Tiwari, and C. P. Singh,  
arXiv: 1306.3291 [hep-ph].
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Transport Properties :

Shear viscosity :

Where n is the total baryon density 
and

A is the Fermi-Dirac distribution function of baryons  and r is the hard-
core radius.

Ref.   S. K. Tiwari et al., Phys. Rev. C 85, 014908 (2012)
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)1( NN

B Sb

a

+
=µ

a=1.482 ± 0.0037GeV 

b=0.3517 ± 0.009 (GeV)-1

µµ 42

BB edcT −−=
c=0.163 ± 0.0021 GeV

d=0.170 ± 0.02 (GeV)-1

e=-0.015 ± 0.01(GeV)-3
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Introduction 

Quantum Chromodynamics (QCD), a theory of strong interaction predicts a phase 
transition from a hot, dense hadron gas (HG) to a deconfined and/or chiral 
symmetric phase of quarks and gluons called as Quark-Gluon Plasma (QGP).  

The ultimate goal of 
ultra-relativistic 
heavy-ion collision 
programmes 
running at various 
places is to study 
the properties of  
QGP in laboratory. arXiv : 

1304.1452
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Observables 

No unambiguous signal for the formation of QGP observed yet (C. P. Singh Phys. Rep.  
 236, 147 (1993), A. Ranjan and V. Ravishankar Ind. J. Phys. 84, 11 (2010) ) .
Phenomenological study required for the proposal of any unambiguous signal.

Taken from 
the  
presentation 
of C. Blume
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