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Introduction

Motivations

Transport coefficients are of interest for many purposes:

For transport codes (compare in/out of equilibrium systems),

For the phase diagram study of nuclear matter,

As input for hydrodynamics calculations (n/s, k),
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Models

The Nambu-Jona-Lasinio model

Lagrangian:
LNy =V (iD= mo) ¥
8
+ 6 Y [@amw) + Wivsa?w)’]
a=0

— K[det¥ (1 —ys5) ¥ + detyr (1+ v5) ¥]

Quark mass:

mi = moj — AGKTU)) + 2K<<z/?jwj>>

[1—fqg—1f]

Chiral condensate:

S mi

el =

Based on PRC 87, 034912 (2013)
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Chiral model for q/q,

QCD symmetries,

hadrons construction,
Finite (T, p).

Meson mass:
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Models

-
¢ The Polyakov-NJL model

Lagrangian:

Modified dist.: o

LpngL =V (iw— mo) VU b, d. T) + mirvowr

(]
+ G Z [l//)ua +(J/iy5/’\a\//)2] fCl g fq (p’ T, I‘L)
fo—> £2p. Top)

+ K[detv/ (1—v5) ¥ + detw (1 + v5) ¥/]

-10 00,

s Im(®)
00 =05
Re(®) 0s
Modified chiral cond.:
A uw@) /T T=400. MeV
) = — #Bp m o> @
~ 5 W =—2ne [ s - -
> - 0
3 s
3 ko o
£ 5 Effective potential: I e f
. U@.D.T) a(T) & s e
0 100 200 300 400 500" T4 - <I)<I> + b(T) 0.0 -05 -10
Re(®) s
T (MeV) log[1 — 6P + 4(d>3 + %) +3(2D)2] 1010
Based on PRD 79, 116003 (2009)
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Models

The Dynamical Quasi-Particle Model

Quasi-partons:

Masses:
MR ) = & (N +ﬂ)T2+&Z“—‘2’
gth-ta)="g |{(NeT 3 2 & w2
—1 2(2 g
q/q(T “q) = e\ +zq:?
Widths:
Tg(T) = NcinT |n(2c +1)
= lM=1g2T (2
To/a(M =3 0 %n |n(g2 +1),

Coupling constant:

2
487
&2(T/Te) =

(11N — 2Nf) In[A2(T/ Te — Ts/Tc)?]

Based on EPJ ST 168, 3 (2009)
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Off-shellness:
Breit-Wigner spectral function:

Alw.p) =

with £2 =2 +m2—r2 and

E( L -
E\(w—-E2+12
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Thermodynamics

Equations of state |

For a non-interacting particle gas:

(o)
d? _ d®p
n(T,M):gg[ﬁfg S(Tyﬂf)_gg/wngg
0 0
oo ud.s 0,43 &*p ud.s u.d.s
&q daP 89 f
9 f £ + + fa |E.
+60[(27r)3|:2q: g+ - q:| (2ﬂ)3|:;q - q |Eq
oo &(T,u) + P(T, ) — ung(T, 1)
&*p  p? s(T,w) = 228 -~ #78
P(T,u) = g @n)y fe3E
€ with
g d.s 0.d.5 _ o
& d3p u.d, .d, P2 u.d.s u.d.s
=27 f f,
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Thermodynamics

Equations of state |

For a non-interacting particle gas:

oo (o)
= p i
n(T,p) = [ @n) fg e(T, 1) = gg w e Eg
0
b Cud 2.ds 1 X 3 u.d.s 0.d.5
& d? - p
+ l[ Attention ! )E Z fo+ fa |Eq
6 (P24 . Z
0

For (P)NJL: no gluons

For PNJL: consider f®(p, T, ) and U(®, ®, T)/T*
For DQPM: consider spectral function A(w, p)
Notice that Pss(NJL) # Pss(PNJL) = Pss(DQPM) |
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T
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Equations of state Il

For a non-interacting particle gas:
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Equations of state Il

For a non-interacting particle gas:
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Threshold

Integrated cross sections

Transition rate:

1) =/ds ST G AT 06)

with the probability to find a ggq (qq)

pair with the energy /s = E; + E, in
the medium (T, w):

L(T. 1, 8) = 2/5 C(T, 1) X pem () X vyel (5)
x fq (E1 — 1) X fa(q) (E2 + (5)u)

while C is a normalization factor fixed
by

(T, 1) =fds L(T, 1, 9)
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Transport coefficients

Relaxation time

We compute transport coefficients using the Relaxation Time Approximation

Relaxation time: i

— T NIL

For the (P)NJL model it is the transition rate inverse, weighted by the 8 — TNIL
-- 7, DQPM

particle density: 6

7 (fm)

TN T, w) =Y (T, ) 03(T, 1)

J 2

For the DQPM, it is directly proportional to the inverse of the width:

0.6 0.8 1.0 12 1.4 1.6 1.8 20

T, H(T) =To(T) and 7, 1(T) = Te(T). T,

This quantity is related to the mean free path and therefore
gives a good estimation of the thermalization time of the species.

Based on PRD 51, 3728 (1995)
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Transport coefficients

Viscosity

Shear viscosity:

o0
1 d*p p*
T, = — — L T f,—
n(T, w) 15ng/(2n)3r“E§

1 2 €9 u.d.s u.d.5 P4
7?/(271)3[2’“ "’f“’]
0

Bulk viscosity:

%) 2\12
_ 1 43p i 2_z2=2_2%0
c(r,u)—g—ng! ngrg?é[p —32(e2-7

S u.d,s u,d,5 2\ 72
Lgg [ _dBp [RR 5 1o _ofp2 ;29
Rl Y tafg+ Y. tafs|—5 |02 —32(E2 -T2 2
T 6 ) o3| G Fafa + 3 el gz |P 3\ Fa

Based on PRC 83, 014906 (2011)
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Transport coefficients

% 8 . .
¢ Conductivity
Conductivity:

Electric conductivity:

with f = u,d, s, 0,d, 3, and the electric charge of quarks ef

oe(T, u) =

Heat conductivity:

3 e np (T, 1) 7¢(T. 1)
me(T, )

KT 1) = Srel ey (T ) Yo (T, u2)
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Transport coefficients

Conclusion
What we did:

@ Complete calculations of equations of state and of a set of transport coefficients
for several models for 0.5 < T/ T, < 2.0,

@ Despite the lack of confinement and gluons degrees of freedoms, the NJL model
gives results not so far from QCD arround T,

@ We have a better understanding of the range of validity of the NJL model,
@ The DQPM compares well with IQCD for the observables studied.
To do list:
@ Results for PNJL SU(3)r,
@ Finite chemical potential calculations,
@ Include hadron interaction for NJL (o(gM — gM)),
@ Calculate differential parton cross sections on the basis of the DQPM couplings,

@ Try box calculations for NJL as it was did for DQPM (rrc 87, 064903 (2013)).
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@ Include hadron interaction for NJL (o(gM — gM)),
@ Calculate differential parton cross sections on the basis of the DQPM couplings,

@ Try box calculations for NJL as it was did for DQPM (rrc 87, 064903 (2013)).

Rudy Marty NJL transport coefficients 12/ 12



	Introduction
	Models
	Thermodynamics
	Transport coefficients

