Upsilon Production in Pb-Pb and p-Pb Collisions at Forward Rapidity with ALICE at the LHC

Palash Khan

Saha Institute of Nuclear Physics (Kolkata, INDIA)

for the ALICE Collaboration

SQM 2013, Birmingham, UK, 21-27 July 2013

Motivation

ALICE Detector

• Results from 2011 Pb-Pb run at $\sqrt{s_{NN}} = 2.76$ TeV :

 $\Upsilon(1S) R_{AA}$ versus centrality

 $\Upsilon(1S)\,R_{_{AA}}$ versus rapidity

Comparison to model predictions

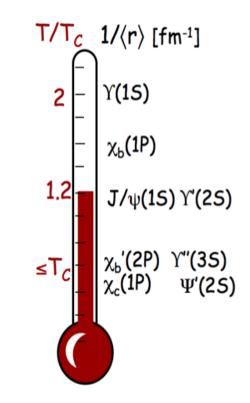
• Results from 2013 p-Pb and Pb-p run at $\sqrt{s_{NN}}$ = 5.02 TeV :

 $\Upsilon(1S)\ R_{_{DPb}}$ at forward and backward rapidity

Forward Backward Ratio ($R_{_{FR}}$) for $\Upsilon(1S)$

Comparison to model predictions

Quarkonium (J/ ψ and Υ) suppression is one of the most striking signatures for QGP formation in AA collisions


- Charm (1.2 $1.4\;\text{GeV}$) and Bottom (4.6 $4.9\;\text{GeV}$) quarks are massive
 - \rightarrow Production takes place at very early stage of the collision

Sequential suppression pattern acts as a QGP thermometer

Resonance	J/ψ	Ψ'	Ύ(1S)	Υ(2S)	Υ(3S)
Mass [GeV]	3.10	3.68	9.46	10.02	10.36
ΔE [GeV]	0.64	0.05	1.10	0.54	0.20
Radius [fm]	0.25	0.45	0.14	0.28	0.39

Quarkonium (re)generation effects may take place if the initial heavy quark multiplicity is large

- Υ expected to be cleaner than J/ ψ
 - \rightarrow Absence of b-hadron feed-down
 - \rightarrow Less recombination is expected than for charm

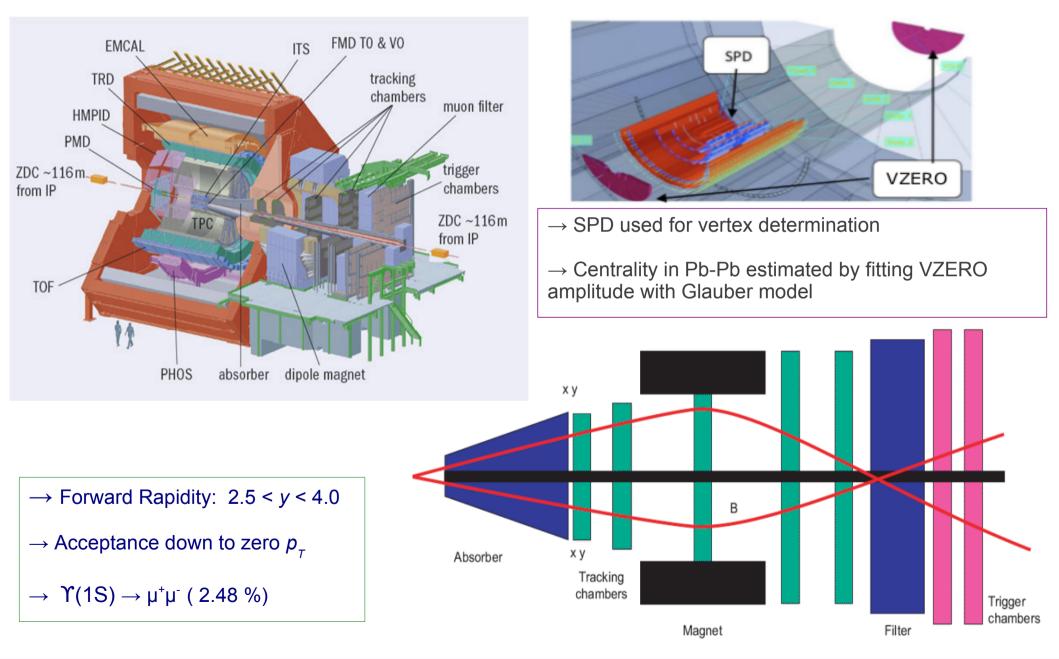
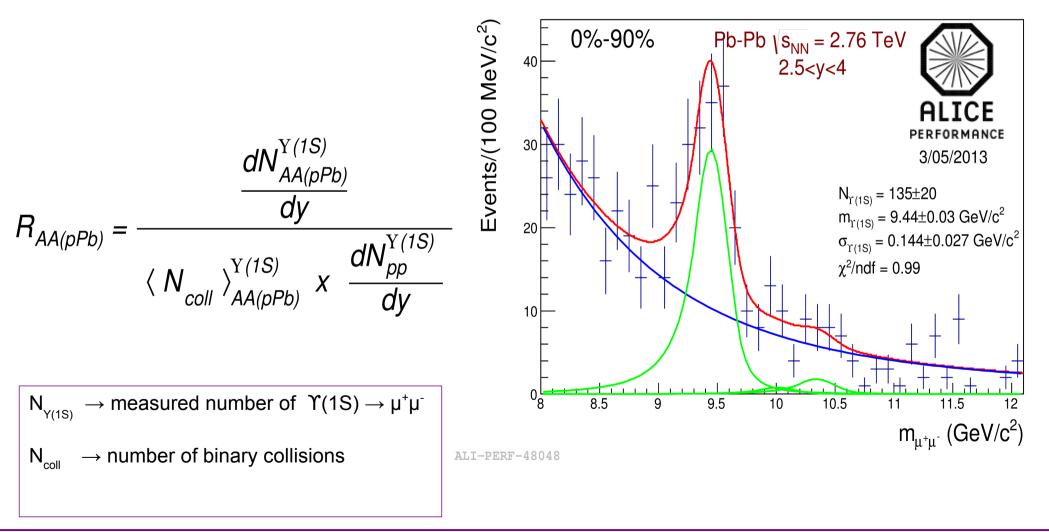
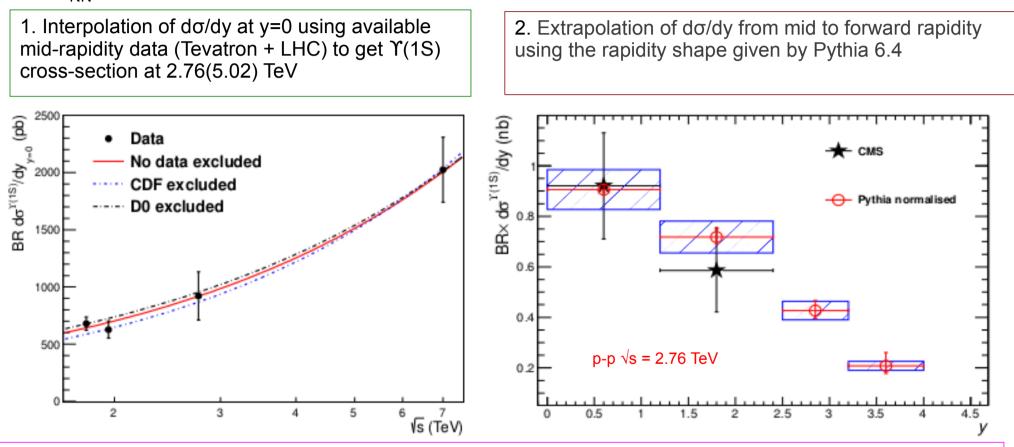


Fig. 5. The QGP thermometer. Agnes Mocsy, Eur.Phys.J.C61, 2009

ALICE Detector



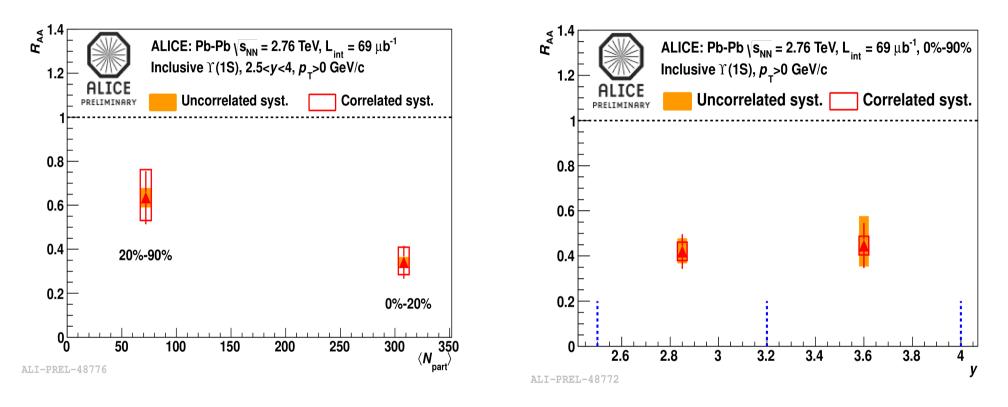
Palash Khan, 26/07/2013


The suppression of quarkonia can be quantified by measuring the Nuclear Modification Factor $R_{AA(pPb)}$, which is the ratio of the production in AA(pPb) collisions to the production in pp scaled by the number of binary collisions.

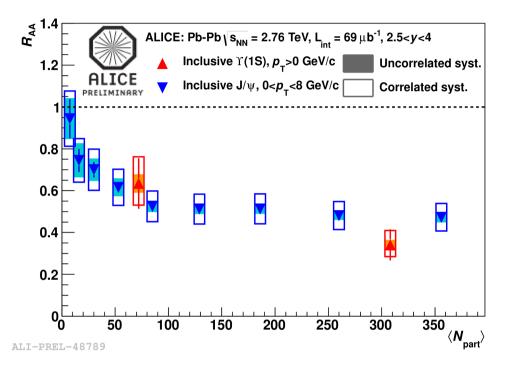
The pp reference d σ /dy for $\Upsilon(1S)$ in the forward rapidity regions of interest for $\sqrt{s_{NN}} = 2.76(5.02)$ TeV is evaluated in two steps:

References for Experimental Data Points:

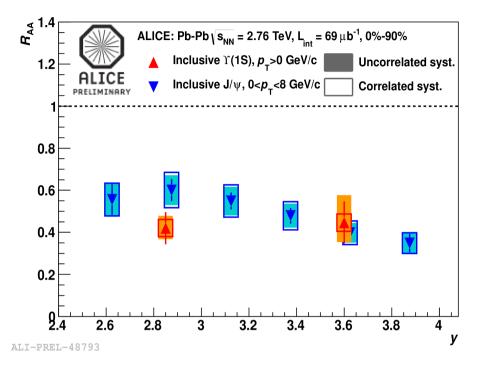
 $\begin{array}{l} \mathsf{CDF}(1.8 \ \mathsf{TeV}) \rightarrow \mathsf{D}. \ \mathsf{Acosta} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CDF} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{Lett.} \ 88 \ (2002) \ 161802. \\ \mathsf{D0} \ (\ 1.96 \ \mathsf{TeV}) \rightarrow \mathsf{V}. \ \mathsf{M}. \ \mathsf{Abazov} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{D0} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{Lett.} \ 94 \ (2005) \ 232001 \ [\mathsf{Erratum-ibid.} \ 100 \ (2008) \ 049902] \ [\mathsf{hep-ex}/0502030]. \\ \mathsf{CMS}(\ 2.76 \ \mathsf{TeV}) \rightarrow \mathsf{S}. \ \mathsf{Chatrchyan} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CMS} \ \mathsf{Collaboration}], \ \mathsf{JHEP} \ 1205, \ 063 \ (2012) \ [\mathsf{arXiv:} 1201.5069 \ [\mathsf{nucl-ex}]]. \\ \mathsf{CMS}(\ 7 \ \mathsf{TeV}) \rightarrow \mathsf{V}. \ \mathsf{Khachatryan} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CMS} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{D} \ 83, \ 112004 \ (2011) \ [\mathsf{arXiv:} 1012.5545 \ [\mathsf{hep-ex}]]. \\ \mathsf{LHCb}(\ 7 \ \mathsf{TeV}) \rightarrow \mathsf{R}. \ \mathsf{Aaij} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{LHCb} \ \mathsf{Collaboration}], \ \mathsf{Eu.} \ \mathsf{Phys.} \ \mathsf{J.} \ \mathsf{C} \ 72, \ 2025 \ (2012) \ [\mathsf{arXiv:} 1202.6579 \ [\mathsf{hep-ex}]]. \end{array}$



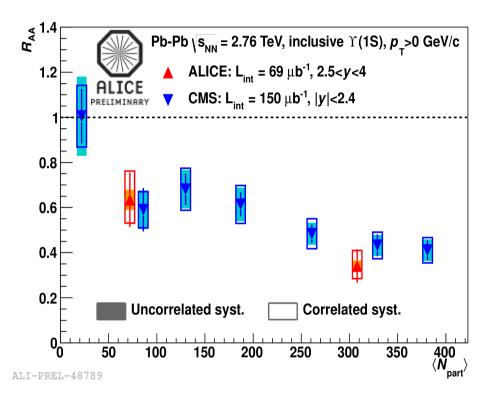
Pb-Pb Results at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$ (Integrated Luminosity 69 µb⁻¹)

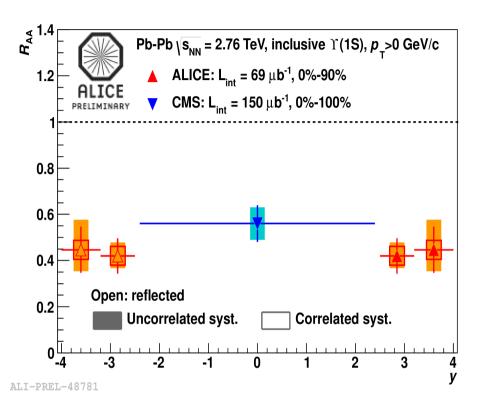


We observe suppression of inclusive Υ(1S)
 Suppression stronger in central collisions
 No rapidity dependence within uncertainties

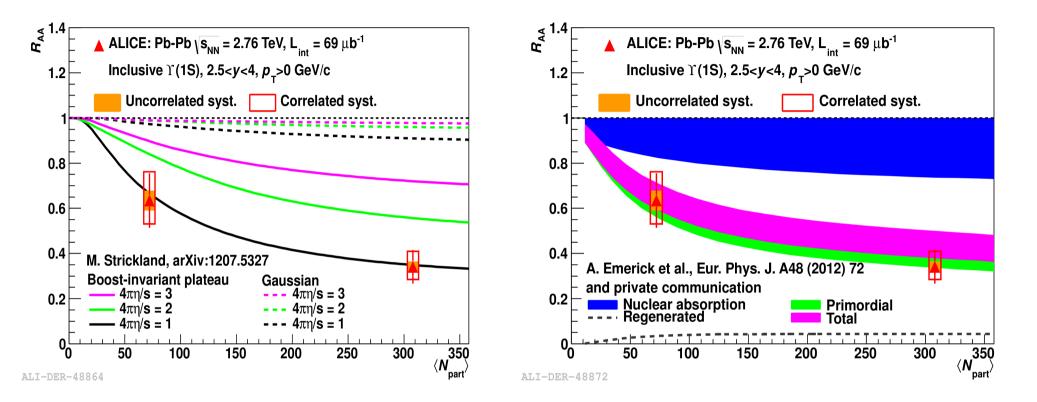


- $\rightarrow \Upsilon$ is expected to be less sensitive to regeneration than J/ψ
- → Feed down from higher excited states Υ (2S), Υ (3S), $\chi_{\rm b}, \chi_{\rm b}' \sim 50 \%$




 \rightarrow Weak rapidity dependence of R_{AA} for both J/ ψ and $\Upsilon(1S)$

* for J/ ψ in Pb-Pb see the talk of Lizardo Valencia Palomo


 \rightarrow The suppression at forward rapidity in ALICE is similar to that at mid-rapidity measured by CMS for both central and semi-peripheral collisions

 \rightarrow No strong rapidity dependence of $R_{_{AA}}$ within the large range probed by ALICE and CMS

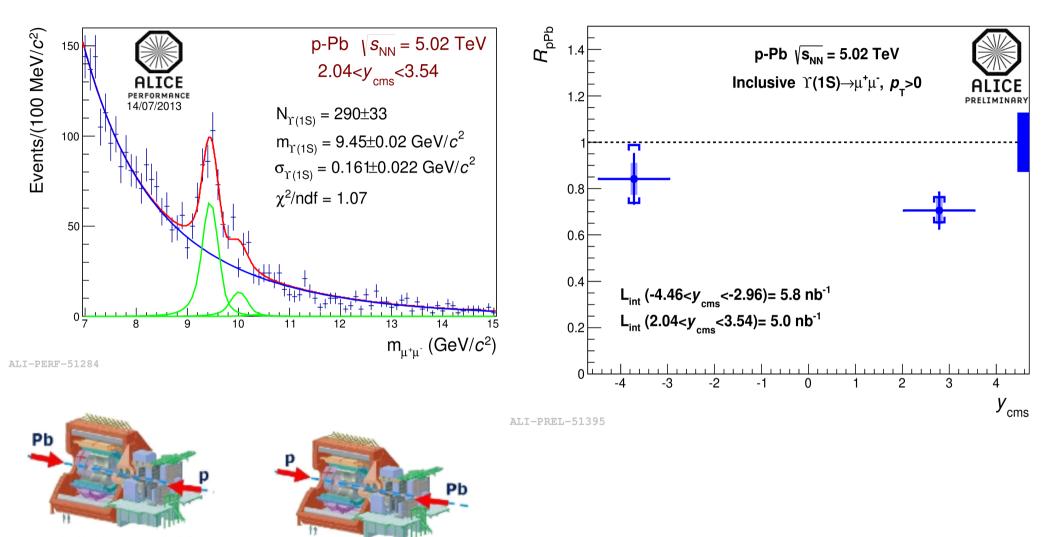
Reference for CMS Data points: PRL 109, 222301, (2012)

 \rightarrow Strickland anisotropic hydro model includes feeddown of $\Upsilon(1S)$ by higher mass states, but does not include recombination effects and cold nuclear matter effects

 \rightarrow Data is described with the hypothesis of a boost invariant plateau temperature profile with minimum shear viscosity at forward-rapidity

 \rightarrow Emerick et al. rate equation model includes small bb regeneration, feed-down from higher mass (~ 50 %) and CNM effects by an overall absorption cross-section of 0-2 mb

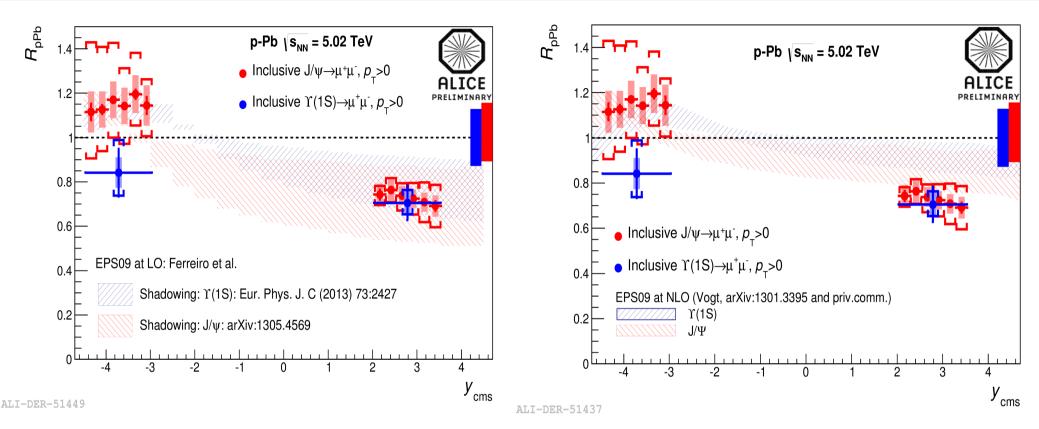
 \rightarrow The model is in fair agreement with data within uncertainties


p-Pb and Pb-p Results at $\sqrt{s_{_{NN}}}$ = 5.02 TeV

[Integrated Luminosity 5.0 nb⁻¹ (p-Pb) and 5.8 nb⁻¹ (Pb-p)]

Nuclear Modification Factor of Inclusive $\Upsilon(1S)$ in p-Pb

-4.46<*y*_{CMS}<-2.96

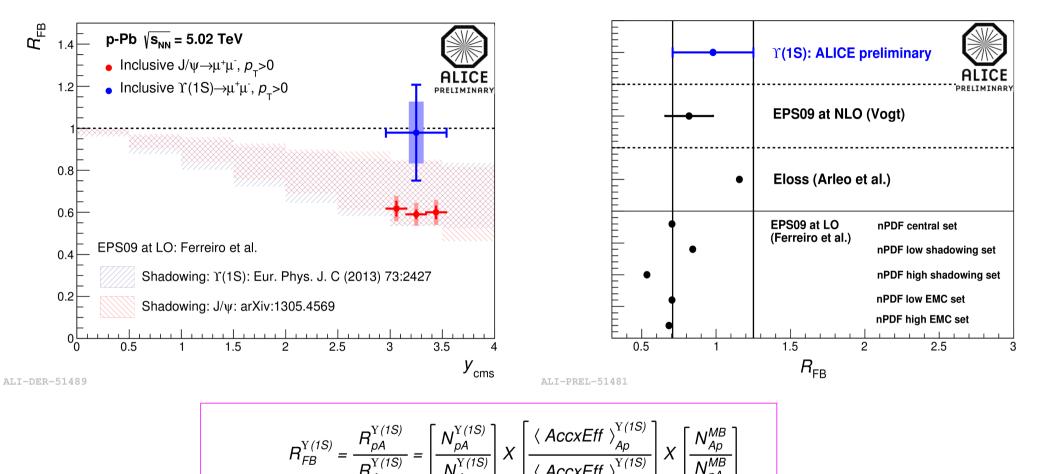

Palash Khan, 26/07/2013

 \rightarrow A suppression is observed for inclusive $\Upsilon(1S)$, stronger at forward rapidity

2.03<y_{CMS}<3.53

 \rightarrow EPS09 calculation at LO from Ferreiro et al. model describes the data within uncertainties.

 \rightarrow The agreement is better for J/ ψ


 \rightarrow EPS09 calculation at NLO from Vogt model describes quite well the J/ ψ data and reproduces, with slightly larger values, the observed trend for $\Upsilon(1S)$

* for J/ψ in p-Pb see the talk of Igor Lakomov

$$\rightarrow \text{The J/} \psi R_{FB} \text{ is significantly lower than } \Upsilon(1S)$$

$$\rightarrow \text{Within the uncertainties Ferreiro Model explains}$$
quite well the R_{FB} both for J/ ψ and $\Upsilon(1S)$

$$\rightarrow \text{The } \Upsilon(1S) \text{ result is at the upper edge of shadowing}$$
calculations, while for J/ ψ the agreement is at the lower edge

Results on $\Upsilon(1S)$ from Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV:

- → The nuclear modification factor for inclusive $\Upsilon(1S)$ has been measured at forward rapidity 2.5 < y < 4.0 down to zero p_{τ}
- \rightarrow Suppression stronger in central collisions
- \rightarrow No rapidity dependence within uncertainties
- \rightarrow Suppression pattern is comparable with forward-rapidity J/ ψ result from ALICE within uncertainties
- \rightarrow No strong rapidity dependence of R_{AA} within the large range probed by ALICE and CMS

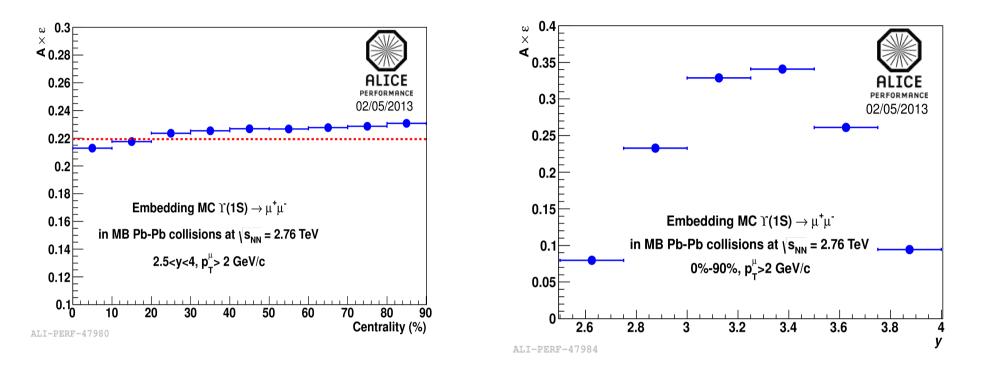
Results on $\Upsilon(1S)$ from p-Pb at $\sqrt{s_{_{NN}}} = 5.02$ TeV :

- \rightarrow We observe small suppression of $\Upsilon(1S)$ in p-Pb data, which tends to increase from backward to forward rapidity
- $\rightarrow J/\psi$ suppression is comparable with $\Upsilon(1S)$ within uncertainties
- $\rightarrow J/\psi R_{_{FB}}$ is significantly lower than $\Upsilon(1S)$

BACKUP

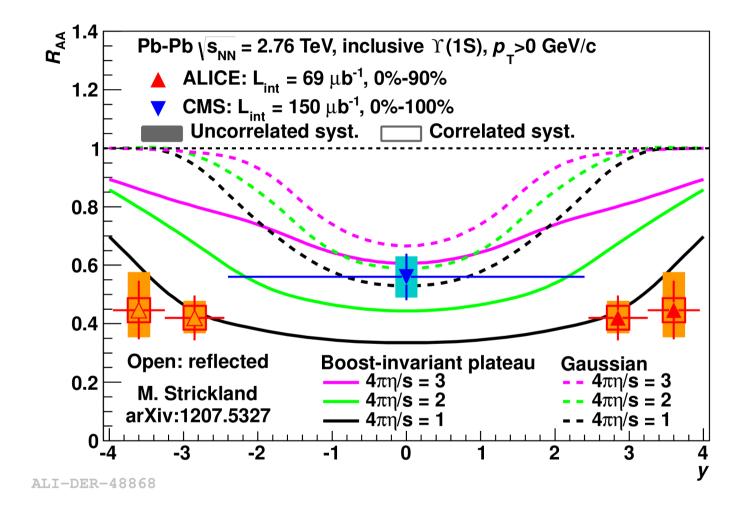
Palash Khan, 26/07/2013

Signal Extraction - PbPb


Event Cuts: Events/(100 MeV/c²) 0%-90% **Physics Selection** Pb-Pb \s_{NN} = 2.76 TeV Unlike Sign Trigger 40 2.5<y<4 Centrality (0-90) % Muon Cuts: PERFORMANCE Trigger Matched Track (Lpt,Lpt) 30 3/05/2013 -4.0 < η < -2.5 $17.6 \text{ cm} < \text{R}_{abs} < 89.5 \text{ cm}$ $N_{\gamma(1S)} = 135\pm 20$ pDCA Selection $m_{\Upsilon(1S)} = 9.44 \pm 0.03 \text{ GeV/c}^2$ 20 $pT \ge 2 \text{ GeV}$ $\sigma_{\Upsilon(1S)} = 0.144 \pm 0.027 \text{ GeV/c}^2$ $\chi^{2}/ndf = 0.99$ **Dimuon Cuts:** -4.0 < y < -2.510 $M_{Y(2S)} = M_{Y(2S)}^{PDG} + (M_{Y(1S)}^{FIT} - M_{Y(1S)}^{PDG}) \frac{M_{Y(2S)}^{PDG}}{M_{Y(1S)}^{PDG}}$ 0₈ 8.5 9.5 9 10 10.5 11.5 11 $m_{u^+u^-}$ (GeV/c²) ALI-PERF-48048 $M_{Y(3S)} = M_{Y(3S)}^{PDG} + (M_{Y(1S)}^{FIT} - M_{Y(1S)}^{PDG}) \frac{M_{Y(3S)}^{PDG}}{M_{Y(1S)}^{PDG}}$ → Signal fitted with Double Crystal Ball \rightarrow Tail parameters fixed from embedding \rightarrow Mass, Sigma and Amplitude free for $\Upsilon(1S)$ $\sigma_{Y(2S)} = \sigma_{Y(1S)} \frac{M_{Y(2S)}^{PDG}}{M_{Y(1S)}^{PDG}}$ $\sigma_{Y(3S)} = \sigma_{Y(1S)} \frac{M_{Y(3S)}^{PDG}}{M_{Y(1S)}^{PDG}}$ \rightarrow Amplitude of $\Upsilon(2S)$ and $\Upsilon(3S)$ kept free

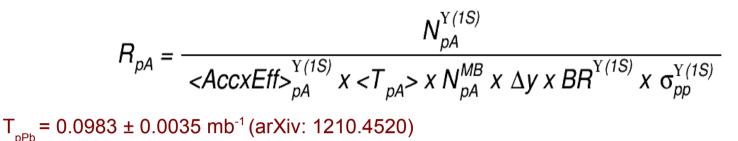
12

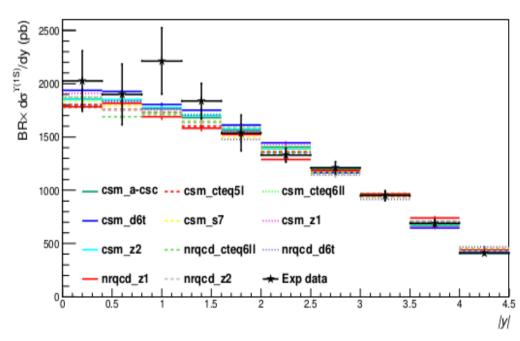
Acceptance Efficiency



 \rightarrow Particle multiplicity high in Pb-Pb collisions, which affects tracl reconstruction efficiency

- \rightarrow Embedding technique provides the most realistic background condition
- $\rightarrow \Upsilon(1S)$ generated using fast generator and forced to decay in dimuons
- \rightarrow Particle transport and detector response provided by GEANT3
- \rightarrow Run by run simulation done to incorporate time dependence of detector set up

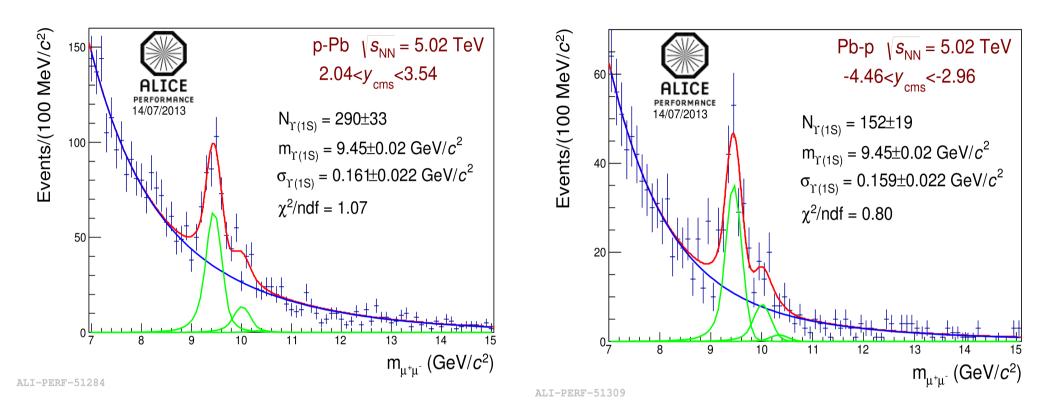




Nuclear Modification Factor R_{nA} :

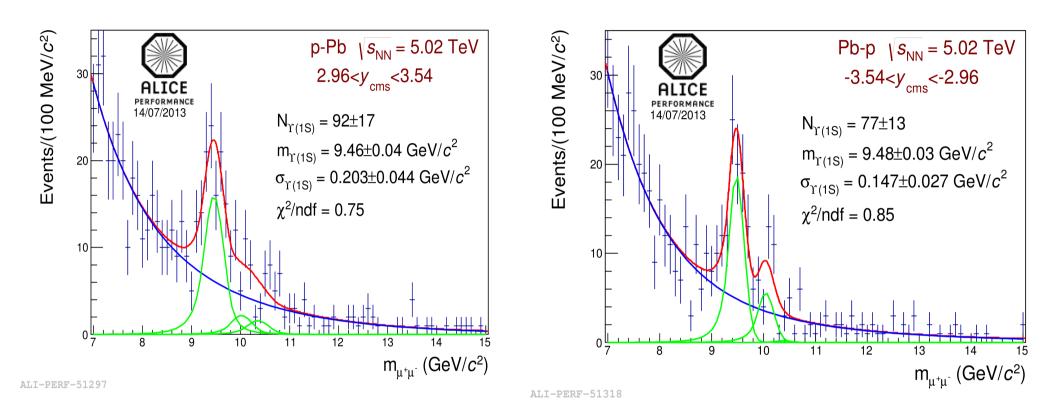
 $\begin{array}{ll} \mathsf{BR*d\sigma/dy} & \to 945 \ \texttt{+62-76} \ (\texttt{norm}) \ \texttt{+27-56} \ (\texttt{extrap}) \ \texttt{pb} \ \texttt{for} \ \texttt{2.03} < \texttt{y} < \texttt{3.53} \ \texttt{in} \ \texttt{p-p} \\ & \to \texttt{510} \ \texttt{+34-41} \ (\texttt{norm}) \ \texttt{+35-95} \ (\texttt{extrap}) \ \texttt{pb} \ \texttt{for} \ \texttt{2.96} < \texttt{y} < \texttt{4.46} \ \texttt{in} \ \texttt{p-p} \end{array}$

 $d\sigma/dy$ for $\Upsilon(1S)$ obtained with Pythia6.4 productions (several tunings), validated with 7 TeV pp data from CMS and LHCb

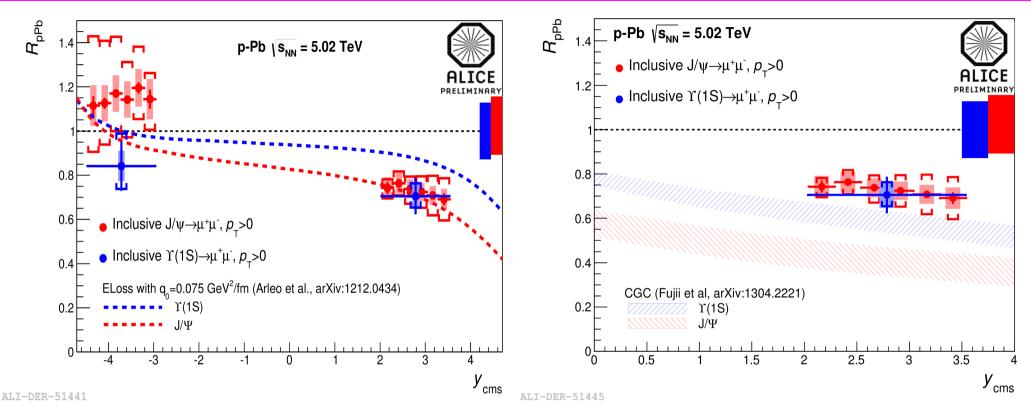

Event Cuts:
Physics Selection
Unlike Sign Trigger
Muon Cuts:
Trigger Matched Track (Lpt,Lpt)
-4.0 < η < -2.5
17.6 cm < R _{abs} < 89.5 cm
pDCA Cut
Dimuon Cuts:
-4.0 < y < -2.5

Beam Type	Analized CMUL Events (after physics selection)
p-Pb (LHC13de)	9.274e+06
Pb-p(LHC13f)	20.913e+06

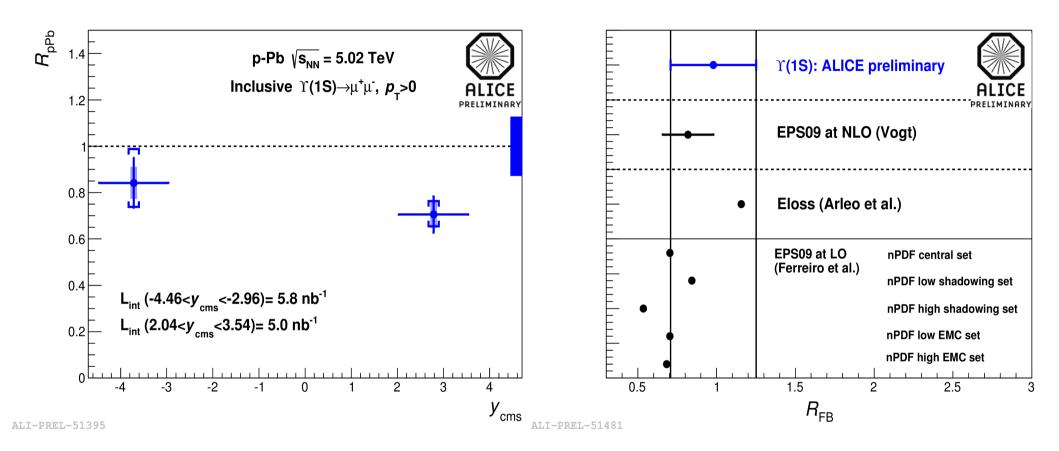
Quantity	p-Pb	Pb-p	
Rapidity Coverage	2.035 < y _{cms} < 3.535 2.50 < y _{lab} < 4.00	2.965 < y _{cms} < 4.465 2.50 < y _{lab} < 4.00	
Common Rapidity Coverage	2.965 < y _{cms} < 3.535 3.43 < y _{lab} < 4.00	2.965 < y _{cms} < 3.535 2.50 < y _{lab} < 3.07	



- \rightarrow Tail parameters taken from pure simulation
- \rightarrow Mass, Sigma and Amplitude free for $\Upsilon(1S)$
- \rightarrow Amplitude of $\Upsilon(2S)$ and $\Upsilon(3S)$ kept free
- \rightarrow Mass and Sigma of $\Upsilon(2S)$ and $\Upsilon(3S)$ fixed from $\Upsilon(1S)$ mass and sigma values
- \rightarrow Tail Parameters of $\Upsilon(2S)$ and $\Upsilon(3S)$ are assumed to be the as that of $\Upsilon(1S)$



Comparison With Models



 \rightarrow Arleo et al. Model is based on parton energy loss mechanism. Although this model reproduces the suppression in backward within the uncertainties it over estimates the suppression in forward

 \rightarrow Fujii et al. Model includes low-x gluon saturation and agrees with the ALICE data

Inclusive $\Upsilon(1S)~R_{_{pA}}$ and $R_{_{FB}}$ from ALICE

BIRMINGHAM