Two-particle correlations in p-Pb collisions at the LHC with ALICE

Leonardo Milano
CERN

On behalf of the ALICE Collaboration
- **Long range correlations**
 - the ridge structure in pp, Pb-Pb and p-Pb collisions

- **A Large Ion Collider Experiment (ALICE)**
 - Particle identification in ALICE

- **Two-particle correlations (2PC)**
 - event multiplicity selection in p-Pb
 - associated yield per trigger particle
 - v_2 from 2PC in high and low multiplicity events

- **Reduction of the jet component using the subtraction procedure**
 - the subtraction procedure
 - v_2 from 2PC after the subtraction procedure

- **Summary**
Long range correlations

η, ϕ correlation between trigger and associated particle in a given p_T interval
Long range correlations

η, ϕ correlation between trigger and associated particle in a given p_T interval

Minimum-bias pp:
- jet peak on the near side (+ resonances)
- recoil jet on the away side

CMS JHEP 09 (2010) 091
Long range correlations

η, φ correlation between trigger and associated particle in a given \(p_T \) interval

Minimum-bias pp:
- **jet peak** on the near side (+ resonances)
- **recoil jet** on the away side

In Pb-Pb there is more...

“Bulk-dominated” \(p_T \) region:
- near side ridge structure, typical of collective systems
- **long range** in \(\Delta \eta \)
- reproduced by hydro models

CMS JHEP 09 (2010) 091

Long range correlations

η, φ correlation between trigger and associated particle in a given p_T interval

Minimum-bias pp:
- **jet peak** on the near side (+ resonances)
- **recoil jet** on the away side

High multiplicity (0.0005% of MB)
- near side ridge
- origin still to be fully understood

CMS JHEP 09 (2010) 091

In Pb-Pb there is more...

“Bulk-dominated” p_T region:
- near side ridge structure, typical of collective systems
- **long range** in $\Delta \eta$
- reproduced by hydro models

The double ridge in p-Pb

Same near side structure in high multiplicity p-Pb events

The double ridge in p-Pb

Same near side structure in high multiplicity p-Pb events
Jet contribution reduced by subtracting low multiplicity events
- long range structure on both the near and away side
- Double ridge in p-Pb

The double ridge in p-Pb

Same near side structure in high multiplicity p-Pb events
Jet contribution reduced by subtracting low multiplicity events
- long range structure on both the near and away side
- Double ridge in p-Pb

- quantified using Fourier decomposition

The double ridge in p-Pb

- Jet contribution reduced by subtracting low multiplicity events
- long range structure on both the near and away side
- Double ridge in p-Pb

Same near side structure in high multiplicity p-Pb events

- quantified using Fourier decomposition

Initial state effects
- Color Glass Condensate (CGC)
- Color connections in the longitudinal direction

The double ridge in p-Pb

Same near side structure in high multiplicity p-Pb events
Jet contribution reduced by subtracting low multiplicity events
- **long range** structure on both the near and away side
- **Double ridge in p-Pb**

- **Initial state effects**
 - Color Glass Condensate (CGC)
 - Color connections in the longitudinal direction

- **Final state effects**
 - Multiparton interactions
 - Collective effects

K. Werner, I. Karpenko, and T. Pierog, P.R.L. 106 (2011) 122004

Initial state effects

Final state effects
The double ridge in p-Pb

Same near side structure in high multiplicity p-Pb events
Jet contribution reduced by subtracting low multiplicity events
- long range structure on both the near and away side
- Double ridge in p-Pb

- quantified using Fourier decomposition

Initial state effects
- Color Glass Condensate (CGC)
- Color connections in the longitudinal direction

Final state effects
- Multiparton interactions
- Collective effects
K. Werner, I. Karpenko, and T. Pierog, P.R.L. 106 (2011) 122004

Does it flow or not?

Particle identification could say something
PID in ALICE: detectors and techniques
Detector description
In this analysis:
- **Inner Tracking System (ITS)**
 - tracking at low p_T
 - vertexing
Detector description

In this analysis:
- **Inner Tracking System (ITS)**
 - tracking at low p_T
 - vertexing
- **Time Projection Chamber (TPC)**
 - main tracking system
 - energy loss in the gas
Detector description

In this analysis:

- **Inner Tracking System (ITS)**
 - tracking at low p_T
 - vertexing

- **Time Projection Chamber (TPC)**
 - main tracking system
 - energy loss in the gas

- **Time of Flight (TOF)**
 - tracks extrapolated from ITS-TPC
 - resolution \sim85ps (high multiplicity p-Pb)
Detector description

In this analysis:

- **Inner Tracking System (ITS)**
 - tracking at low p_T
 - vertexing

- **Time Projection Chamber (TPC)**
 - main tracking system
 - energy loss in the gas

- **Time of Flight (TOF)**
 - tracks extrapolated from ITS-TPC
 - resolution ~85ps (high multiplicity p-Pb)

- **VZERO**
 - VZERO A (2.8<η<5.1)
 - VZERO C (-3.7<η<-1.7)
 - trigger, multiplicity selection
Particle identification

\[N^2_{\sigma,\text{PID}} = N^2_{\sigma,\text{TPC}} + N^2_{\sigma,\text{TOF}} \]
Particle identification

\[N_{\sigma, \text{PID}}^2 = N_{\sigma, \text{TPC}}^2 + N_{\sigma, \text{TOF}}^2 \]

\[N_{\sigma, \text{PID}} < 3 \]

\[N_{\sigma, \text{PID}} = N_{\sigma, \text{TPC}} \quad \text{below } p_T = 0.5 \text{ GeV/c} \]
Particle identification

\[N_{\sigma,\text{PID}}^2 = N_{\sigma,\text{TPC}}^2 + N_{\sigma,\text{TOF}}^2 \]

\[N_{\sigma,\text{PID}} < 3 \]

\[N_{\sigma,\text{PID}} = N_{\sigma,\text{TPC}} \text{ below } p_T = 0.5 \text{ GeV/c} \]

high (> 85%) purity in the considered \(p_T \) range
2PC, event selection

- not easy to define centrality in p-A because of biases

see Andreas Morsch, 25 Jul 2013 at 11:30
2PC, event selection

- not easy to define centrality in p-A because of biases

- Multiplicity in the VZERO A (2.8 < η < 5.1) to define the event classes
 - VZERO A in the flight direction of the Pb beam (fragmentation of the nucleus)

ALICE p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-100%

see Andreas Morsch, 25 Jul 2013 at 11:30
2PC, event selection

- not easy to define centrality in p-A because of biases

see Andreas Morsch, 25 Jul 2013 at 11:30

- Multiplicity in the VZERO A (2.8 < \(\eta \) < 5.1) to define the event classes
- VZERO A in the flight direction of the Pb beam (fragmentation of the nucleus)
- large \(\eta \) gap between multiplicity determination and track selection
2PC, associated yield

Associated yield per trigger particle

\[
\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{assoc}}}{d\Delta\eta d\Delta\phi} = \frac{S(\Delta\eta, \Delta\phi)}{B(\Delta\eta, \Delta\phi)}
\]
Associated yield per trigger particle

\[
\frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{assoc}}}{d\Delta\eta d\Delta\phi} = \frac{S(\Delta\eta, \Delta\phi)}{B(\Delta\eta, \Delta\phi)}
\]

\[S(\Delta\eta, \Delta\phi) = \frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{same}}}{d\Delta\eta d\Delta\phi}\]

- \(S(\Delta\eta, \Delta\Phi)\) from same events
Associated yield per trigger particle

\[\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{assoc}}}{d \Delta \eta d \Delta \varphi} = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)} \]

\[S(\Delta \eta, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{same}}}{d \Delta \eta d \Delta \varphi} \]

\[B(\Delta \eta, \Delta \varphi) = \alpha \frac{d^2 N_{\text{mixed}}}{d \Delta \eta d \Delta \varphi} \]

- \(S(\Delta \eta, \Delta \varphi) \) from same events
- \(B(\Delta \eta, \Delta \varphi) \) from mixed events
 (normalized such that \(B(0,0)=1 \))
2PC, associated yield

Associated yield per trigger particle

\[\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{assoc}}}{d\Delta \eta d\Delta \phi} = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \]

- tracking efficiency and contamination from secondary particles as single particle weights
- data driven correction for misidentification:

\[Y^K_{\text{corrected}}(\Delta \eta, \Delta \phi) = Y^K_{\text{measured}}(\Delta \eta, \Delta \phi) - \alpha_{\pi \to K} Y^\pi_{\text{measured}}(\Delta \eta, \Delta \phi) \]

\[S(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{same}}}{d\Delta \eta d\Delta \phi} \]

\[B(\Delta \eta, \Delta \phi) = \alpha \frac{d^2 N_{\text{mixed}}}{d\Delta \eta d\Delta \phi} \]

- \(S(\Delta \eta, \Delta \phi) \) from same events
- \(B(\Delta \eta, \Delta \phi) \) from mixed events (normalized such that \(B(0,0)=1 \))
2PC, Fourier coefficients

trigger particle: unidentified hadron
associated particle: identified particle

same p_T interval
2PC, Fourier coefficients

trigger particle: unidentified hadron
associated particle: identified particle

same p_T interval

ALICE
p-Pb $\sqrt{s_{NN}} = 5.02$ TeV

Near side jet peak
Away side recoil-jet peak
2PC, Fourier coefficients

trigger particle: unidentified hadron
associated particle: identified particle

same p_T interval
2PC, Fourier coefficients

- Trigger particle: unidentified hadron
- Associated particle: identified particle
- Same p_T interval

Jet peak in the near side excluded ($\Delta \eta < 0.8$)

Good fit with 3 components:
- First component large due to recoil jet
- a_2 given by jet+ridge
- a_3 much smaller than the other coefficients
2PC, v_2 coefficients

From a_2 we get v_2:

$$V^{h-i}_{n\Delta} \{2PC\} = \frac{a^{h-i}_{n}}{a^{h-i}_{0}}$$

$$v^{i}_{n} \{2PC\} = \frac{V^{h-i}_{n\Delta}}{\sqrt{V^{h-h}_{n\Delta}}}$$
From a_2 we get v_2:

$$v_n^{h-i} \{2PC\} = \frac{a_n^{h-i}}{a_0^{h-i}}$$

- No significant mass ordering in low multiplicity class
From a_2 we get v_2: \[V_{n\Delta}^{h-i}\{2PC\} = a_{n}^{h-i}/a_0^{h-i} \quad v_{n}^{i}\{2PC\} = V_{n\Delta}^{h-i}/\sqrt{V_{n\Delta}^{h-h}} \]

- No significant mass ordering in low multiplicity class
- Mild mass ordering at low transverse momenta in high multiplicity classes
2PC, v_2 coefficients

From a_2 we get v_2:

$$V_{n\Delta}^{h-i}\{2PC\} = a_n^{h-i}/a_0^{h-i} \quad \quad v_n^{i}\{2PC\} = V_{n\Delta}^{h-i}/\sqrt{V_{n\Delta}^{h-h}}$$

- No significant mass ordering in low multiplicity class
- Mild mass ordering at low transverse momenta in high multiplicity classes

...But we can do more...
jet contribution reduced assuming:

- Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events
2PC, the subtraction procedure

jet contribution reduced assuming:

- Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events

No significant ridge in 60-100%
jet contribution reduced assuming:

- Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events

No significant ridge in 60-100%

Not the case for 0-20%

jet contribution reduced assuming:

- Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events

- per-trigger jet contribution independent of the event multiplicity

ALICE, arXiv:1307.3237 [nucl-ex]
2PC, the subtraction procedure

jet contribution reduced assuming:

- Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events

No significant ridge in 60-100%

Not the case for 0-20%

- per-trigger jet contribution independent of the event multiplicity

high multiplicity (0-20%) - low multiplicity (60-100%)

2PC, the subtraction procedure
2PC, the subtraction procedure
2PC, the subtraction procedure

\[\frac{1}{N_{\text{coll}}} \frac{d^3N}{d\eta \cdot d\phi \cdot d\Omega} = \frac{1}{N_{\text{coll}}} \frac{d^3N}{d\eta \cdot d\phi \cdot d\Omega} \]

\[\frac{1}{N_{\text{coll}}} \frac{d^3N}{d\eta \cdot d\phi \cdot d\Omega} \]
2PC, the subtraction procedure

residual of jet, particularly important for pions
- most likely event selection bias on jet fragmentation
- excluded on the near side (|Δη|>0.8)
- systematic on the away side taken into account
2PC, the subtraction procedure

residual of jet, particularly important for pions
- most likely event selection bias on jet fragmentation
- excluded on the near side (|Δη|>0.8)
- systematic on the away side taken into account
residual of jet, particularly important for pions
- most likely event selection bias on jet fragmentation
- excluded on the near side (|Δη|>0.8)
- systematic on the away side taken into account
residual of jet, particularly important for pions
- most likely event selection bias on jet fragmentation
- excluded on the near side ($|\Delta \eta| > 0.8$)
- systematic on the away side taken into account
Only significant contribution from second Fourier coefficient
First coefficient smaller w.r.t. the case without subtraction (up to ~10 times smaller)
Third coefficient still small
Only significant contribution from second Fourier coefficient
First coefficient smaller w.r.t. the case without subtraction (up to ~10 times smaller)
Third coefficient still small

Not only the jet is subtracted but also the baseline:

\[V_{n\Delta}\{2\text{PC, sub}\} = \frac{a_n}{(a_0 + b)} \]

*b calculated in 60-100% class
2PC, v2 of π, K and p

ALICE

p-Pb $\sqrt{s_{NN}} = 5.02$ TeV
(0-20%) - (60-100%)

$|\Delta\eta| > 0.8$ (Near side only)

$v_2^{2PC, \text{sub}}$

p_T (GeV/c)

- $v_{2,h}$ same as our earlier results ALICE, Phys.Lett. B719 (2013) 29–41
2PC, v_2 of π, K and p

- $v_{2,h}$ same as our earlier results ALICE, Phys. Lett. B719 (2013) 29–41
- $v_{2,\pi}$ similar to $v_{2,h}$
$2\text{PC, } v_2 \text{ of } \pi, K \text{ and } p$

$\text{p-Pb } \sqrt{s_{NN}} = 5.02 \text{ TeV}$

$(0-20\%) - (60-100\%)$

- $v_{2,h}$ same as our earlier results $ALICE, \text{Phys.Lett. B719 (2013) 29–41}$
- $v_{2,\pi}$ similar to $v_{2,h}$
- Hint of $v_{2,K}$ smaller than $v_{2,\pi}$ at low p_T
2PC, v2 of π, K and p

- $v_{2,h}$ same as our earlier results *ALICE, Phys.Lett. B719 (2013) 29–41*
- $v_{2,\pi}$ similar to $v_{2,h}$
- hint of $v_{2,K}$ smaller than $v_{2,\pi}$ at low p_T
- $v_{2,p}$ smaller than $v_{2,\pi}$ below 2 GeV/c and larger above
- crossing at about 2 GeV/c

2PC, v2 of π, K and p

- behavior similar to PbPb collisions
(also seen in the p_T spectra)

ALICE, arXiv:1307.6796 [nucl-ex]

see Jonas ANIELSKI on 26 Jul 2013 at 15:40
2PC, v2 of π, K and p

- behavior similar to PbPb collisions

(also seen in the p_T spectra)

ALICE, arXiv:1307.6796 [nucl-ex]

see Jonas ANIELSKI on 26 Jul 2013 at 15:40

- Mass ordering at low p_T qualitatively consistent with hydro models

Summary

ALICE has further characterized the double ridge structure from two particle correlations in p-Pb
- the jet contribution has to be subtracted to reveal the double ridge
ALICE has further characterized the double ridge structure from two particle correlations in p-Pb
- the jet contribution has to be subtracted to reveal the double ridge

The double ridge can be studied using Fourier decomposition
- second Fourier coefficient much larger than the others
ALICE has further characterized the double ridge structure from two particle correlations in p-Pb
- the jet contribution has to be subtracted to reveal the double ridge

The double ridge can be studied using Fourier decomposition
- second Fourier coefficient much larger than the others

The behavior of the v_2 parameter is similar to the one observed in Pb-Pb collisions
- different mechanisms to explain such structure
- the question “Does it flow or not?” still open
Summary

ALICE has further characterized the double ridge structure from two particle correlations in p-Pb
- the jet contribution has to be subtracted to reveal the double ridge

The double ridge can be studied using Fourier decomposition
- second Fourier coefficient much larger than the others

The behavior of the v_2 parameter is similar to the one observed in Pb-Pb collisions
- different mechanisms to explain such structure
- the question “Does it flow or not?” still open

Thank you for your attention!
THANKS
BACKUP
tracking efficiency

\[p_{\text{T}} \text{ (GeV/c)} \]

\[\begin{array}{c}
\text{tracking efficiency} \\
0.5 \ 1 \ 1.5 \ 2 \ 2.5 \ 3 \ 3.5 \ 4 \ 4.5 \ 5 \\
\end{array} \]

\[\begin{array}{c}
\text{tracking efficiency} \\
0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1 \\
\end{array} \]

\[p \text{-Pb } s_{\text{NN}}=5.02 \text{ TeV} \]

04/07/2013

ALI-PERF-50609

Leonardo Milano, CERN
TOF matching efficiency

$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$

p_{T} (GeV/c)

p-Pb $\sqrt{s_{NN}}=5.02$ TeV

17/07/2013

ALI-PERF-56258