Anisotropic flow of identified particles in Pb-Pb collisions at 2.76 TeV with the ALICE detector

You Zhou

Nikhef & Utrecht University
(on behalf of the ALICE Collaboration)
Anisotropic flow signals the presence of multiple interactions between the constituents of the medium created in the collision, its magnitude therefore is a detailed probe of the level of thermalization.

Anisotropic flow:
- quantified as the coefficients of the Fourier expansion of azimuthal transverse momentum distribution

\[
E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{dp_T d\eta} \left(1 + \sum_{n=1}^{\infty} 2v_n(p_T, \eta) \cos[n(\varphi - \Psi_n)]\right)
\]
- \(v_2\) : elliptic flow; \(v_3\) : triangular flow; \(v_4, v_5, \ldots\)

Anisotropic flow of identified particles allows to probe the freeze-out conditions of the system (temperature, radial flow, \ldots)
- test with \(\pi, K, p\) \(v_2\) and \(v_3\)
- describe all particles \(v_2\) simultaneously (strange, multi-strange particles)?

Identified particles \(v_2\) (\(v_3\)) allow us to check the baryon meson scaling
- indication of partonic collectivity?
Data sample:
- Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV,
- ~ 10 M Pb-Pb events,
- minimum bias trigger,
- acceptance: -0.8 < η < 0.8.

Detectors used:
- Inner Tracking System (tracking and vertexing).
- Time Projection Chamber (tracking & particle identification),
- Time-Of-Flight (particle identification),
- VZERO detectors (-3.7 < η < -1.7, 2.8 < η < 5.1, centrality / event plane)
Particle identification with TOF & TPC:
- asymmetric β-cut in TOF and 2σ cut in the TPC dE/dx to select a high purity sample of π, K and p.
- p_T range (in GeV/c):
 - π: $0.3 < p_T < 3.5$
 - K: $0.4 < p_T < 2.5$
 - p: $0.5 < p_T < 4.0$
- purity > 90%

Identification at high p_T with TPC:
- purity cut on the TPC dE/dx signal:
- p_T range (in GeV/c):
 - π and p: $3 < p_T < 16$
- purity: pions > 90%, protons > 80%
Topological reconstruction

arXiv:1307.5530
Today
See Talk:
L. HANRATTY
25 Jul 2013, 18:10-18:30

arXiv:1307.5543
Today
See Talk:
D. COLELLA
25 Jul 2013, 17:50-18:10

- Topological reconstructions for strange and multi-strange particles
Flow Methodology

- Anisotropic flow of π, K, p is directly measured by Q-cumulant, Scalar Product and Event Plane method.
- We extract v_2 of K_S^0, Λ, Ξ and Ω, with v_2 vs. invariant mass method:
 $$v_2^T(m_{inv}) = v_2^S \frac{N^S}{N^T}(m_{inv}) + v_2^B \frac{N^B}{N^T}(m_{inv})$$
 - the yields N^S, N^B are obtained from the fits of the invariant mass distributions.
 - the $v_2^T(m_{inv})$ is measured by Scalar Product and Event Plane method
 - the $v_2^B(m_{inv})$ is parameterized with the polynomial function
 - all necessary information to extract v_2^S is available
\[v_2 \text{ of } \pi, K, p, K_S^0, \Lambda \]

- \(v_2 \) is measured for a number of particles with light and strange quark contents.
- The mass ordering is stronger in most central collisions.
 - indicative of stronger radial flow in more central collisions
- The \(v_2 \) of \(p \) is significantly different from that of \(\pi \) at higher \(p_T \) region.
Comparison with hydrodynamic calculations

- hydrodynamic calculation, VISH2+1 (w/o afterburner) reproduces the main features of v_2 at low p_T range,
 - it describes the measurements better in peripheral than central collisions
 - it overestimates the p v_2 in central collisions.
 - the hadronic interactions might play an important role in reproducing p v_2
Multi-strange particles v_2

We also observe clear mass ordering in $\bar{\Xi}$ and Ω v_2.
NCQ scaling serves a test for the particle production via quark coalescence.
The ratio of v_2/n_q for identified particle and v_2/n_q of π vs p_T/n_q have been shown.

v_2/n_q vs. p_T/n_q (n_q: number of quarks per meson/baryon) shows that if such scaling exists it is only approximate (holds within 20%) at $p_T/n_q \sim 1.2$ GeV/c.
NCQ scaling vs transverse kinetic energy

- NCQ scaling vs KE_T/n_q provides additional checks (and w/o mass effect) if the particle production is due to the quark coalescence picture.
For low KE_T/n_q: v_2/n_q together with KE_T scaling is violated at LHC.

For $KE_T/n_q > 1$ GeV/c v_2 of p is lower than that of π.
\(v_2 \) measured at the LHC is slightly above the RHIC \(v_2 \) for \(\pi \) and K

\(v_2 \) of \(p \) is lower at low \(p_T \) but higher at higher \(p_T \) at the LHC than at RHIC

- reflects effect of larger radial flow at LHC
Triangular flow of π, K, p

At low p_T, we see mass ordering as expected from the hydro picture.

ν_3 of π and p cross at intermediate p_T as expected from coalescence.

Further constrains for initial state models as well as the η/s.
NCQ scaling of v_3 works better than for v_2 but it is still only approximate.
Elliptic flow and triangular flow at high p_T

- v_2 and v_3 of p are larger than that of π out to $p_T = 8\text{ GeV}/c$
 - agree with the picture that particle production includes interactions of jet fragments with bulk matter in this p_T region
- π v_2 is compatible with π^0 measured by PHENIX and π^0 calculation reproduced by WHDG for LHC
- π and p v_2 are consistent within uncertainties for $p_T > 10\text{ GeV}/c$.

ALICE: PLB 719 (2013) 18

Pb-Pb $\sqrt{s_{NN}}$=2.76 TeV

ALICE: Pb-Pb $\sqrt{s_{NN}}$=2.76 TeV

PHENIX: PRL 105 (2010) 142301

WHDG: Horowitz, Gyulassy, JPG 38, 124114 (2011)
Summary

- Anisotropic flow of identified particles (including π, K, p, K_S^0, Λ, Ξ and Ω) are measured in 2.76 TeV Pb-Pb collision.

- For $p_T < 3$ GeV/c:
 - observed mass dependence is reproduced by the hydrodynamic model calculations (VISH2+1)
 - The larger mass splitting of v_2 to higher p_T observed by ALICE is consistent with stronger radial flow at the LHC
 - v_3 of π, K, and p has a similar mass dependence and crossing point as that of v_2

- For $p_T \sim 3$-6 GeV/c:
 - number of constituent quark scaling holds only approximately for v_2
 - KE$_T$ scaling works better for v_3 than v_2

- For high p_T:
 - v_2 and v_3 of p are finite, positive and higher than that of π up to 8 GeV/c
 - v_2 of π and p are consistent within uncertainties for $p_T > 10$ GeV/c
ALICE contributions on PID Flow in SQM

- Heavy flavor decay $\mu \nu_2$ (talk from X. Zhang)
 - 23 Jul 2013, 16:20-16:40, Session: Heavy Flavour 1

- D-meson flow (talk from E. Bruna)

- PID $\nu_2\{2PC\}$ in pPb (talk from L. Milano)
 - 26 Jul 2013, 15:20-15:40, Session: p-A collisions

- Heavy flavor decay $e\nu_2$ (poster from A. Dubla)
 - 23 July 2013, 19:30-21:00, Session: poster

Thanks for your attention!