

Anisotropic flow of identified particles in Pb-Pb collisions at 2.76 TeV with the ALICE detector

Nikhef & Utrecht University
(on behalf of the ALICE Collaboration)

Motivation

- Anisotropic flow signals the presence of multiple interactions between the constituents of the medium created in the collision, its magnitude therefore is a detailed probe of the level of thermalization.
- Anisotropic flow:
 - quantified as the coefficients of the Fourier expansion of azimuthal transverse momentum distribution

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{dp_{T}d\eta} (1 + \sum_{n=1}^{\infty} 2v_{n}(p_{T}, \eta) \cos[n(\varphi - \Psi_{n})])$$

- v_2 : elliptic flow; v_3 : triangular flow; $v_4 v_5$...
- Anisotropic flow of identified particles allows to probe the freeze-out conditions of the system (temperature, radial flow, ...)
 - test with π , K, p v_2 and v_3
 - describe all particles v_2 simultaneously (strange, multi-strange particles)?
- \diamond Identified particles v_2 (v_3) allow us to check the baryon meson scaling
 - indication of partonic collectivity ?

Analysis Details

❖ Data sample:

- Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV,
- ~ I0 M Pb-Pb events,
- minimum bias trigger,
- acceptance: $-0.8 < \eta < 0.8$.

❖ Detectors used:

- Inner Tracking System (tracking and vertexing).
- Time Projection Chamber (tracking & particle identification),
- Time-Of-Flight (particle identification),
- VZERO detectors
 (-3.7<η<-1.7, 2.8<η<5.1, centrality / event plane)

Identification of TT, K, p

- - asymmetric β-cut in TOF and 2σ cut in the TPC dE/dx to select a high purity sample of π , K and p.
 - p_T range (in GeV/c):
 - π : 0.3 < p_T < 3.5
 - K: $0.4 < p_T < 2.5$
 - p : $0.5 < p_T < 4.0$
 - purity > 90%
- ❖ Identification at high p_T with TPC:
 - purity cut on the TPC dE/dx signal:
 - p_T range (in GeV/**c**):
 - π and p: 3 < p_T < 16
 - purity: pions > 90%, protons > 80%

Topological reconstruction

arXiv:1307.5530

Today

See Talk:

L. HANRATTY

25 Jul 2013,18:10-18:30

arXiv:1307.5543

Today

See Talk:

D. COLELLA

25 Jul 2013, 17:50-18:10

Topological reconstructions for strange and multi-strange particles

Flow Methodology

- Anisotropic flow of π, K, p is directly measured by Q-cumulant, Scalar Product and Event Plane method.
- * We extract v_2 of K_S^0 , Λ , Ξ and Ω , with v_2 vs. invariant mass method:

$$v_2^T(m_{inv}) = v_2^S \frac{N^S}{N^T}(m_{inv}) + v_2^B(m_{inv}) \frac{N^B}{N^T}(m_{inv})$$

- the yields N^S , N^B are obtained from the fits of the invariant mass distributions.
- the v₂^T(m_{inv}) is measured by Scalar Product and Event Plane method
- the $v_2^B(m_{inv})$ is parameterized with the polynomial function
- all necessary information to extract v₂^S is available

V_2 of π , K, p, K_S^0 , Λ

- v_2 is measured for a number of particles with light and strange quark contents
- ❖ The mass ordering is stronger in most central collisions.
 - indicative of stronger radial flow in more central collisions
- \clubsuit The v_2 of p is significantly different from that of π at higher p_T region

Comparison with hydrodynamic calculations

- \clubsuit hydrodynamic calculation, VISH2+I (w/o afterburner) reproduces the main features of v_2 at low p_T range,
 - it describes the measurements better in peripheral than central collisions
 - it overestimates the p v_2 in central collisions.
 - the hadronic interactions might play an important role in reproducing p v_2

Multi-strange particles v₂

 \clubsuit We also observe clear mass ordering in Ξ and Ω v_2

NCQ scaling vs transverse momentum

NCQ scaling serves a test for the particle production via quark coalescence

10

NCQ scaling vs transverse momentum

- The ratio of v_2/n_q for identified particle and v_2/n_q of π vs p_T/n_q have been shown.
- v_2/n_q vs. p_T/n_q (n_q : number of quarks per meson/baryon) shows that if such scaling exists it is only approximate (holds within 20%) at $p_T/n_q \sim 1.2$ GeV/c

NCQ scaling vs transverse kinetic energy

Arr NCQ scaling vs KE_T/n_q provides additional checks (and w/o mass effect) if the particle production is due to the quark coalescence picture.

You Zhou (Nikhef & UU)

NCQ scaling vs transverse kinetic energy

40-50%

- For low KE_T/n_q : v_2/n_q together with KE_T scaling is violated at LHC
- ❖ For $KE_T/n_a > 1$ GeV/c v_2 of p is lower than that of π

From RHIC to LHC

40-60%

- v_2 measured at the LHC is slightly above the RHIC v_2 for π and K
- v_2 of p is lower at low p_T but higher at higher p_T at the LHC than at RHIC
 - reflects effect of larger radial flow at LHC

Triangular flow of TT, K, p

- \diamondsuit At low p_T , we see mass ordering as expected from the hydro picture.
- v_3 of π and p cross at intermediate p_T as expected from coalescence.
- \clubsuit Further constrains for initial state models as well as the η/s .

KE_T scaling for v_3

NCQ scaling of v_3 works better than for v_2 but it is still only approximate

Elliptic flow and triangular flow at high pt

- v_2 and v_3 of p are larger than that of π out to $p_T = 8 \text{ GeV}/c$
 - **a** agree with the picture that particle production includes interactions of jet fragments with bulk matter in this p_T region
- \star π v_2 is compatible with π^0 measured by PHENIX and π^0 calculation reproduced by WHDG for LHC
- $\bullet \pi$ and p v_2 are consistent within uncertainties for $p_T > 10 \text{ GeV}/c$.

Summary

- Anisotropic flow of identified particles (including π , K, p, K_S^0 , Λ , Ξ and Ω) are measured in 2.76 TeV Pb-Pb collision.
- ❖ For p_T < 3 GeV/c:
 - observed mass dependence is reproduced by the hydrodynamic model calculations (VISH2+I)
 - The larger mass splitting of v₂ to higher p_T observed by ALICE is consistent with stronger radial flow at the LHC
 - v_3 of π , K, and p has a similar mass dependence and crossing point as that of v_2
- **❖** For p_T ~ 3-6 GeV/**c** :
 - number of constituent quark scaling holds only approximately for v_2
 - KE_T scaling works better for v_3 than v_2
- ❖ For high p_T:
 - v_2 and v_3 of p are finite, positive and higher than that of π up to 8 GeV/ ϵ
 - v_2 of π and p are consistent within uncertainties for $p_T > 10$ GeV/ ϵ

More flow studies in ALICE

ALICE contributions on PID Flow in SQM

- \diamond Heavy flavor decay μv_2 (talk from X. Zhang)
 - 23 Jul 2013, 16:20-16:40, Session: Heavy Flavour 1
- ❖ D-meson flow (talk from E. Bruna)
 - 25 Jul 2013, 15:20-15:40, Session: Heavy Flavour 2
- Arr PID $v_2\{2PC\}$ in pPb (talk from L. Milano)
 - 26 Jul 2013, 15:20-15:40, Session: p-A collisions
- \Leftrightarrow Heavy flavor decay e v_2 (poster from A. Dubla)
 - 23 july 2013, 19:30-21:00, Session: poster

Thanks for your attention!

