Anisotropic flow of identified particles in Pb-Pb collisions at 2.76 TeV with the ALICE detector Nikhef & Utrecht University (on behalf of the ALICE Collaboration) ### **Motivation** - Anisotropic flow signals the presence of multiple interactions between the constituents of the medium created in the collision, its magnitude therefore is a detailed probe of the level of thermalization. - Anisotropic flow: - quantified as the coefficients of the Fourier expansion of azimuthal transverse momentum distribution $$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{dp_{T}d\eta} (1 + \sum_{n=1}^{\infty} 2v_{n}(p_{T}, \eta) \cos[n(\varphi - \Psi_{n})])$$ - v_2 : elliptic flow; v_3 : triangular flow; $v_4 v_5$... - Anisotropic flow of identified particles allows to probe the freeze-out conditions of the system (temperature, radial flow, ...) - test with π , K, p v_2 and v_3 - describe all particles v_2 simultaneously (strange, multi-strange particles)? - \diamond Identified particles v_2 (v_3) allow us to check the baryon meson scaling - indication of partonic collectivity ? # Analysis Details #### ❖ Data sample: - Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV, - ~ I0 M Pb-Pb events, - minimum bias trigger, - acceptance: $-0.8 < \eta < 0.8$. #### ❖ Detectors used: - Inner Tracking System (tracking and vertexing). - Time Projection Chamber (tracking & particle identification), - Time-Of-Flight (particle identification), - VZERO detectors (-3.7<η<-1.7, 2.8<η<5.1, centrality / event plane) # Identification of TT, K, p - - asymmetric β-cut in TOF and 2σ cut in the TPC dE/dx to select a high purity sample of π , K and p. - p_T range (in GeV/c): - π : 0.3 < p_T < 3.5 - K: $0.4 < p_T < 2.5$ - p : $0.5 < p_T < 4.0$ - purity > 90% - ❖ Identification at high p_T with TPC: - purity cut on the TPC dE/dx signal: - p_T range (in GeV/**c**): - π and p: 3 < p_T < 16 - purity: pions > 90%, protons > 80% # Topological reconstruction arXiv:1307.5530 **Today** See Talk: L. HANRATTY 25 Jul 2013,18:10-18:30 arXiv:1307.5543 **Today** See Talk: D. COLELLA 25 Jul 2013, 17:50-18:10 Topological reconstructions for strange and multi-strange particles # Flow Methodology - Anisotropic flow of π, K, p is directly measured by Q-cumulant, Scalar Product and Event Plane method. - * We extract v_2 of K_S^0 , Λ , Ξ and Ω , with v_2 vs. invariant mass method: $$v_2^T(m_{inv}) = v_2^S \frac{N^S}{N^T}(m_{inv}) + v_2^B(m_{inv}) \frac{N^B}{N^T}(m_{inv})$$ - the yields N^S , N^B are obtained from the fits of the invariant mass distributions. - the v₂^T(m_{inv}) is measured by Scalar Product and Event Plane method - the $v_2^B(m_{inv})$ is parameterized with the polynomial function - all necessary information to extract v₂^S is available # V_2 of π , K, p, K_S^0 , Λ - v_2 is measured for a number of particles with light and strange quark contents - ❖ The mass ordering is stronger in most central collisions. - indicative of stronger radial flow in more central collisions - \clubsuit The v_2 of p is significantly different from that of π at higher p_T region ### Comparison with hydrodynamic calculations - \clubsuit hydrodynamic calculation, VISH2+I (w/o afterburner) reproduces the main features of v_2 at low p_T range, - it describes the measurements better in peripheral than central collisions - it overestimates the p v_2 in central collisions. - the hadronic interactions might play an important role in reproducing p v_2 # Multi-strange particles v₂ \clubsuit We also observe clear mass ordering in Ξ and Ω v_2 # NCQ scaling vs transverse momentum NCQ scaling serves a test for the particle production via quark coalescence 10 ## NCQ scaling vs transverse momentum - The ratio of v_2/n_q for identified particle and v_2/n_q of π vs p_T/n_q have been shown. - v_2/n_q vs. p_T/n_q (n_q : number of quarks per meson/baryon) shows that if such scaling exists it is only approximate (holds within 20%) at $p_T/n_q \sim 1.2$ GeV/c ## NCQ scaling vs transverse kinetic energy Arr NCQ scaling vs KE_T/n_q provides additional checks (and w/o mass effect) if the particle production is due to the quark coalescence picture. You Zhou (Nikhef & UU) ## NCQ scaling vs transverse kinetic energy #### 40-50% - For low KE_T/n_q : v_2/n_q together with KE_T scaling is violated at LHC - ❖ For $KE_T/n_a > 1$ GeV/c v_2 of p is lower than that of π ## From RHIC to LHC #### 40-60% - v_2 measured at the LHC is slightly above the RHIC v_2 for π and K - v_2 of p is lower at low p_T but higher at higher p_T at the LHC than at RHIC - reflects effect of larger radial flow at LHC # Triangular flow of TT, K, p - \diamondsuit At low p_T , we see mass ordering as expected from the hydro picture. - v_3 of π and p cross at intermediate p_T as expected from coalescence. - \clubsuit Further constrains for initial state models as well as the η/s . # KE_T scaling for v_3 NCQ scaling of v_3 works better than for v_2 but it is still only approximate # Elliptic flow and triangular flow at high pt - v_2 and v_3 of p are larger than that of π out to $p_T = 8 \text{ GeV}/c$ - **a** agree with the picture that particle production includes interactions of jet fragments with bulk matter in this p_T region - \star π v_2 is compatible with π^0 measured by PHENIX and π^0 calculation reproduced by WHDG for LHC - $\bullet \pi$ and p v_2 are consistent within uncertainties for $p_T > 10 \text{ GeV}/c$. # Summary - Anisotropic flow of identified particles (including π , K, p, K_S^0 , Λ , Ξ and Ω) are measured in 2.76 TeV Pb-Pb collision. - ❖ For p_T < 3 GeV/c: - observed mass dependence is reproduced by the hydrodynamic model calculations (VISH2+I) - The larger mass splitting of v₂ to higher p_T observed by ALICE is consistent with stronger radial flow at the LHC - v_3 of π , K, and p has a similar mass dependence and crossing point as that of v_2 - **❖** For p_T ~ 3-6 GeV/**c** : - number of constituent quark scaling holds only approximately for v_2 - KE_T scaling works better for v_3 than v_2 - ❖ For high p_T: - v_2 and v_3 of p are finite, positive and higher than that of π up to 8 GeV/ ϵ - v_2 of π and p are consistent within uncertainties for $p_T > 10$ GeV/ ϵ #### More flow studies in ALICE #### ALICE contributions on PID Flow in SQM - \diamond Heavy flavor decay μv_2 (talk from X. Zhang) - 23 Jul 2013, 16:20-16:40, Session: Heavy Flavour 1 - ❖ D-meson flow (talk from E. Bruna) - 25 Jul 2013, 15:20-15:40, Session: Heavy Flavour 2 - Arr PID $v_2\{2PC\}$ in pPb (talk from L. Milano) - 26 Jul 2013, 15:20-15:40, Session: p-A collisions - \Leftrightarrow Heavy flavor decay e v_2 (poster from A. Dubla) - 23 july 2013, 19:30-21:00, Session: poster Thanks for your attention!