Open Heavy Flavor Production In Heavy-Ion Collisions from STAR

Yifei Zhang (for the STAR Collaboration)
University of Science and Technology of China

- Introductions
- Recent measurements
- Near future HF program
- Summary
Light flavor behavior in strongly coupled medium

- **High $p_T$:**
  - Light quark e-loss, Jet quenching
- **Low $p_T$:**
  - Hydrodynamics works
  - Multi-strange hadrons flow
- **Intermediate $p_T$:**
  - Number of Constituent Quark scaling
  - $s \sim u,d$

$\sqrt{s_{NN}} = 200$ GeV $^{197}$Au+$^{197}$Au Collisions at RHIC

(a) Light quarks

(b) Strange quarks

$V_2$ (%)

Transverse Momentum $p_T$ (GeV/c)

QM09
Light flavor behavior in strongly coupled medium

- **High $p_T$:**
  - Light quark e-loss, Jet quenching

- **Low $p_T$:**
  - Hydrodynamics works
  - Multi-strange hadrons flow

- **Intermediate $p_T$:**
  - Number of Constituent Quark scaling
  - flow $s \sim u, d$

Large partonic collective flow observed.
$u, d, s$ quarks strongly interact with hot/dense medium.

What about heavy quarks?
Is the medium hot/dense enough to modify heavy quarks at RHIC energy?

---

QM09
Why are heavy quarks important?

- Higgs mass: electro-weak symmetry breaking (current quark mass).
- QCD mass: Chiral symmetry breaking (constituent quark mass).
- Strong interactions impact little on heavy quark mass.

- Production cross section can be evaluated by pQCD. Provide reference for charmonium calculations.
- Sensitive to initial gluon density and distribution.
- Probe for studying medium properties.
- Charm collectivity => sensitive to the thermalization of the medium.
The STAR detector for open HF measurement

**Time Projection Chamber:**
- $|\eta|<1$, full azimuth
- Tracking.
- PID through $dE/dx$

**Time of Flight:**
- $|\eta|<1$, full azimuth
- PID through TOF
- Timing resolution: ~85 ps.

**Barrel Electromagnetic Calorimeter**
- $|\eta|<1$, full azimuth
- **BTOW:**
  - Tower matching
  - $p/E$ for electron ID
  - Fast online trigger
- **BSMD:**
  - Double layer High spatial resolution MWPC.
  - $e/h$ separation.
Particle Identification

\[ n\sigma = \ln\left(\frac{dE^{\text{Measured}}}{dx} - \frac{dE^{\text{Exp}}}{dx}\right) / \sigma \]
Particle Identification

\[ n\sigma = \ln(\frac{dE^{\text{Measured}}}{dx} - \frac{dE^{\text{Exp}}}{dx}) / \sigma \]
Particle Identification

\[ n\sigma = \ln\left(\frac{dE^{\text{Measured}}}{dx} - \frac{dE^{\text{Exp}}}{dx}\right) / \sigma \]

- Low \( p_T \) e

D meson hadronic daughter ID.
Particle Identification

\[ n\sigma = \ln\left(\frac{dE^{\text{Measured}}}{dx} - \frac{dE^{\text{Exp}}}{dx}\right) / \sigma \]

\[ \sqrt{s_{NN}} = 200\text{GeV} \]

Low \( p_T \) e

High \( p_T \) e

D meson hadronic daughter ID.
D⁰ signals in Au+Au 200 GeV

- Combining data from Year 2010 & 2011.

- Total: ~ 800 M Min.Bias events

- Significant signals are observed Total ~ 14σ in 0<p_T<8 GeV/c.
Nuclear modification of $D^0$

Au+Au 200 GeV $(D^0+\overline{D^0})/2$, $|y| < 1$

- 0-80% $y_{10}$
- 0-80% $y_{10+y_{11}}$
- 0-10% $\times 20$
- 10-40% $\times 5$
- 40-80% $\div 2$

$\frac{d^2N}{N_{ev}(2\pi p_T dp_T dy)} (\text{GeV/c})^2$

STAR Preliminary

- p+p $D^0+D^*$ $\times 2$
- p+p Levy scaled by $\langle N_{bin} \rangle$

pp reference:
PRD 86, 072013 (2012)
Nuclear modification of $D^0$

No obvious suppression observed in peripheral collisions.
No obvious suppression observed in peripheral collisions.
Nuclear modification of $D^0$

- No obvious suppression observed in peripheral collisions.
- Suppression at high $p_T$ (> 3 GeV/c) in central and mid-central collisions.
No obvious suppression observed in peripheral collisions.

- Suppression at high $p_T$ (> 3 GeV/c) in central and mid-central collisions. Suppression level is consistent with pions.
No obvious suppression observed in peripheral collisions.

Suppression at high $p_T$ (> 3 GeV/c) in central and mid-central collisions. Suppression level is consistent with pions.

Integrated yields below 3 GeV/c is number of binary scaled.
No obvious suppression observed in peripheral collisions.

Suppression at high $p_T$ (> 3 GeV/c) in central and mid-central collisions. Suppression level is consistent with pions.

Integrated yields below 3 GeV/c is number of binary scaled.

D$^0$ may freeze out earlier and/or charm does not have much radial flow as light quarks.
No obvious suppression observed in peripheral collisions.

Suppression at high $p_T (> 3$ GeV/c) in central and mid-central collisions. Suppression level is consistent with pions.

Integrated yields below 3 GeV/c is number of binary scaled.

$D^0$ may freeze out earlier and/or charm does not have much radial flow as light quarks.

Low $p_T$ enhancement, radial flow of light quarks coalescence with charm (models).
Charm cross section versus $N_{\text{bin}}$ at 200 GeV

The charm cross section at mid-rapidity:

$$\left. \frac{d\sigma}{dy} \right|_{y=0}^{pp} = 170 \pm 45_{-59}^{+38} \mu b \quad \left. \frac{d\sigma}{dy} \right|_{y=0}^{AuAu} = 175 \pm 13 \pm 23 \mu b$$

The total charm cross section (extrapolate from PYTHIA F^~4.7):

$$\sigma_{cc}^{pp} = 797 \pm 210_{-295}^{+208} \mu b \quad \sigma_{cc}^{AuAu} = 822 \pm 62 \pm 192 \mu b$$

Assuming $N_{D0} / N_{cc} = 0.56$ does not change for total cross section.


Charm cross section follows number of binary collisions scaling $\Rightarrow$

Charm quarks are mostly produced via initial hard scatterings
Non-photonic electron $R_{AA}$ in Au+Au 200 GeV

- Strong suppression at high $p_T$ in central collisions
Non-photonic electron $R_{AA}$ in Au+Au 200 GeV

- Strong suppression at high $p_T$ in central collisions
- $D^0$, NPE results seems to be consistent, in spite of kinematics smearing & charm/bottom mixing
Non-photonic electron $R_{AA}$ in Au+Au 200 GeV

- Strong suppression at high $p_T$ in central collisions
- $D^0$, NPE results seems to be consistent, in spite of kinematics smearing & charm/bottom mixing
- Models with radiative energy loss underestimate the suppression
- Uncertainty dominated by $p+p$ result.
- High quality $p+p$ data from Run12 are on disk.

DGLV: Djordjevic, PLB632, 81 (2006)
CUJET: Buzzatti, arXiv:1207.6020
D⁰ v₂ measurement in Au+Au 200 GeV

Need HFT for more precise measurement:
- to confirm the coalescence scenarios.
- to confirm the energy dependence.

Different production mechanisms compared with hidden charm?
NPE $v_2$ in Au+Au 200 GeV

**200 GeV Au+Au:**
- Large NPE $v_2$ observed at low $p_T$ => strong charm-medium interaction
- $v_2$ increase at $p_T > 3$ GeV/c
  - path length of energy loss
  - Jet-like correlation.
Peripheral is consistent with no suppression.
Minbias and central 0-10% show no obviously larger suppression compared with D$^0$ $R_{AA}$.
We expect more precise measurement with Heavy Flavor Tracker.
Assuming $D^0$ $R_{cp}$ distribution as charged hadron.

1B Au+Au m.b. events at 200 GeV.

- Charm $R_{AA} \Rightarrow$
  
  *Energy loss mechanism!*

  *Charm interaction with QCD matter!*

Assuming $D^0$ $v_2$ distribution from quark coalescence.

1B Au+Au m.b. events at 200 GeV.

- Charm $v_2 \Rightarrow$
  
  *Medium/light flavor thermalization*

  *Drag coefficients!*

12 weeks, expected to get ~1B MB events
Summary

- Charm cross sections at mid-rapidity follow number of binary collisions scaling, which indicates charm quarks are mostly produced via initial hard scatterings.

- Observed large high-$p_T$ suppression of heavy quark production via NPE and $D^0$ meson measurement in 200 GeV central Au+Au collisions.

- Low-$p_T$ enhanced structure of $D^0 R_{AA}$ is consistent with coalescence picture that charm recombined with thermalized light quarks in the medium.

- First separation of $b$ & $c$ contribution in NPE analysis directly from experiment although with limited statistics. Bottom does not suppress more in central collisions compared to charm, but no suppression is seen in peripheral collisions.

- HFT upgrade with increasing RHIC luminosity is expected to provide much more precise measurement on open heavy flavor properties.
Summary

- Charm cross sections at mid-rapidity follow number of binary collisions scaling, which indicates charm quarks are mostly produced via initial hard scatterings.

- Observed large high-$p_T$ suppression of heavy quark production via NPE and $D^0$ meson measurement in 200 GeV central Au+Au collisions.

- Low-$p_T$ enhanced structure of $D^0 R_{AA}$ is consistent with coalescence picture that charm recombined with thermalized light quarks in the medium.

- First separation of b & c contribution in NPE analysis directly from experiment although with limited statistics. Bottom does not suppress more in central collisions compared to charm, but no suppression is seen in peripheral collisions.

- HFT upgrade with increasing RHIC luminosity is expected to provide much more precise measurement on open heavy flavor properties.

More exciting results are coming soon!

Thank you for your attention!
Backup Slides
Non-photonic electron spectra in Au+Au 200 GeV

Non-photonic electron (NPE): electron from HF decays

- ~1 nb$^{-1}$ sampled luminosity in Run2010 Au+Au collisions.
- ~6 pb$^{-1}$ sampled luminosity in Run2005 and Run2008 p+p collisions.
**D⁰ and D* signals in p+p 200 GeV**

- **K*⁰**
  - Unlike Sign (US)
  - Like Sign (LS)
  - Rotation (Rot)

- **K₂*⁰(1430)**

- **D⁰**

- **D*⁺ → D⁰(Bar D⁰) + π⁻ → K⁺π⁻π⁻**

---

p+p minimum bias 105 M

Different methods reproduce comb. background.
Consistent between two background methods.

- ✧ No secondary vertex reconstruction so far.
- ✧ STAR took advantage of the large acceptance, and beat combinatorial background with statistics

---

PRD 86, 072013 (2012)
D⁰ and D* p_T spectra in p+p 200 GeV

The charm cross section at mid-rapidity:
\[ \left. \frac{d\sigma}{dy} \right|_{y=0}^{pp} = 170 \pm 45_{-59}^{+38} \mu b \]

The total charm cross section:
\[ \sigma^{pp}_{cc} = 797 \pm 210_{-295}^{+208} \mu b \]

D⁰ scaled by \( N_{cc} / N_{D^0} = 1 / 0.565 \)[1]
D* scaled by \( N_{cc} / N_{D^*} = 1 / 0.224 \)[1]

Xsec = dN/dy|_{y=0}^{cc} \times F \times \sigma_{pp}
F = 4.7 \pm 0.7 scale to full rapidity.
\( \sigma_{pp}(NSD) = 30 \) mb

D, B and B->D are generated from PYTHIA. Normalized by FONLL cross section, the band indicate uncertainty of Strong pT dependence, but contribution is small, less than 10%. Low pT only contributes a few percent, which will not affect cross section result. Assuming B feeddown fraction is the same for p+p and Au+Au, then RAA will not be affected. The B feeddown will be in the systematic uncertainty.
Heavy Flavor Tracker

## Detector Specifications

<table>
<thead>
<tr>
<th>Detector</th>
<th>Radius (cm)</th>
<th>Hit Resolution $R/\phi - Z$ ((\mu m - \mu m))</th>
<th>Radiation length</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD</td>
<td>22</td>
<td>20 / 740</td>
<td>1% $X_0$</td>
</tr>
<tr>
<td>IST</td>
<td>14</td>
<td>170 / 1800</td>
<td>&lt;1.5% $X_0$</td>
</tr>
<tr>
<td>PIXEL</td>
<td>8</td>
<td>12 / 12</td>
<td>~0.4% $X_0$</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>12 / 12</td>
<td>~0.4% $X_0$</td>
</tr>
</tbody>
</table>
Statistic projection of $e_D$, $e_B$ $R_{CP}$ & $v_2$


- (B→e) spectra obtained via the subtraction of charm decay electrons from inclusive NPEs:
  - no model dependence, reduced systematic errors.

- Unique opportunity for bottom e-loss and flow.
  - Charm may not be heavy enough at RHIC, but how is bottom?
Charmed baryons – Y14

$\Lambda_c \rightarrow pK\pi$  Lowest mass charm baryons  $c\tau = 60 \mu m$

$\Lambda_c/D$ enhancement?

- $0.11$ (pp PYTHIA) $\rightarrow$ $0.4-0.9$  (Di-quark correlation in QGP)
  S.H. Lee etc. PRL 100, 222301 (2008)

- Total charm yield in heavy ion collisions