Production of $\pi/K/p$ in pp and PbPb collisions measured with ALICE

Marek Chojnacki
University of Copenhagen, Niels Bohr Institute for the ALICE Collaboration
ALICE Detector

- Inner Tracking System (ITS)
- Time of Flight (TOF)
- Time Projection Chamber
- HMPID Cherenkov detector
PID Performance
Particle identification is made:
→ by selecting reconstructed tracks which have a PID signal close to expected value
→ fitting empirical functions to PID signal distributions

Final spectra are combinations of spectra measured using different particle identification (PID) methods and detectors.
Spectra are measured from 100 MeV/c to 20 GeV/c in p_T
Spectra are normalized to the number of inelastic events
pp results vs. theory

⇒ Ratios are similar at 7 TeV and 2.76 TeV and they are not reproduced by theory
⇒ Color reconnection improves a description of ratio by PYTHIA [arXiv:1303.6326]
⇒ More on color reconnection in pp=> Jonas Anielski “Identified spectra in p-Pb”
$p_T < 3 \text{ GeV/c}$ flow and bulk properties

$3 < p_T < 7 \text{ GeV/c}$ anomalous baryon enhancement and coalescence?

$p_T > 7 \text{ GeV/c}$ search for medium modification of fragmentation functions

M. Chojnacki (NBI)
Spectra in Blast-Wave Model

- Good description of the spectra in combined fit ranges especially for central events
- The individual fits can describe spectra over the full measured range
- Useful tool for comparison with previous results

arXiv:1303.0737
Results of the BW

- Centrality dependence of the $T_{\text{kin}}, \langle \beta_T \rangle$ similar to RHIC
- More rapid expansion with increasing centrality
Spectra in hydro models

Hydro models:

VISH2+1: viscous hydrodynamics without description of hadronic phase, using thermal yields at \(T_{ch} = 165 \) MeV

(Shen et al., PRC 84, 044903 (2011))

HKM: hydro+UrQMD, additional radial flow built by hadronic phase which also affects particle ratios as a result of inelastic interactions

(Karpenko et al., arXiv:1204.5351)

Kraków: introduces non equilibrium corrections due to the bulk viscosity at the transition from the hydrodynamic description to particles which changes the effective \(T_{ch} \)

(Bożek, PRC 85, 034901 (2012))

EPOS: uses breakup of the flux tubes created by initial hard scatterings to described the spectra shapes for all \(p_T \)

Hydro models provide a reasonable description of the measured spectra at \(p_T \) lower than 3 GeV/c.
Spectra in hydro models

Hydro models:

VISH2+1: viscous hydrodynamics without description of hadronic phase, using thermal yields at $T_{ch}=165$ MeV
(Shen et al., PRC 84, 044903 (2011))

HKM: hydro+UrQMD, additional radial flow built by hadronic phase which also affects particle ratios as a result of inelastic interactions
(Karpenko et al., arXiv:1204.5351)

Kraków: introduces non-equilibrium corrections due to the bulk viscosity at the transition from the hydrodynamic description to particles which changes the effective T_{ch}
(Bożek, PRC 85, 034901 (2012))

EPOS: uses breakup of the flux tubes created by initial hard scatterings to described the spectra shapes for all p_T

They fail in peripheral collisions.
Global particle production

- $T_{ch} = 164$ MeV from lower energies extrapolation: does not reproduce the data, overestimates proton yield
- Baryon annihilation (Becattini et al., arXiv:1212.2431)
- Non-equilibrium SHM (Petran, Rafelski et al., arXiv:1303.2098)
- Flavor hierarchy in QCD phase transition (Ratti et al., PRD 85, 014004 (2012))
- Higher mass resonance states
Intermediate p_T

π → p/π in the bulk and in the peak
π → p/π in the peak agrees with pp results
enhancement of the baryon-to-meson ratio driven by bulk properties
more on the baryon-to-meson ratio in talk by Luke Hanratty on Thursday
High p_T

> At $p_T > 10$ GeV/c all R_{AA}s converge
> No difference in energy loss for $\pi/K/p$?

Resonances R_{AA} talk by Anders Garritt Knospe, multi-strange R_{AA} talk by Domenico Colella, both on Thursday.
Conclusions

- Hydro pictures give good description of ρ_T distributions at LHC energies
- Lower p/π than equilibrium thermal model expectations
- At intermediate p_T the bulk effects dominate
- R_{AA} for $\pi/K/p$ are comparable at high p_T, suggests that medium does not significantly affect fragmentation
- What about p-Pb? ⇒ Talk by Jonas Anielski on Friday
Backup
The secondary particles are subtracted using a data driven method.