Measurement of azimuthal anisotropy of hadrons
in $\mathrm{Au}+\mathrm{Au}$ collisions from a beam energy scan by the PHENIX experiment at RHIC.

Yoshimasa Ikeda, RIKEN for the PHENIX collaboration

PH *ENIX

ค
Computer Center

Azimuthal anisotropy

- Azimuthal anisotropy depends on initial kinematics
- Elliptical particle emission angle distribution for noncentral collision
- It is measured as $2^{n d}$ term of Fourier series $\left(\mathbf{v}_{2}\right)$
$d N$
$\frac{d N}{d \Phi} \propto 1+2 v_{2} \cos 2(\Phi-\Psi)$
Ψ : reaction plane angle

Hydro-dynamics model

High resolution measurement of PID hadron v_{2}

- Comparison with rare particle.
- Deuteron that is formed by p-n (or 6 quarks) should has higher v_{2} than proton.
- Φ meson has small cross section for hadron scattering. The mass is similar to proton or \wedge rather than π or K.

- Study for low energy colilision

arXiv:0710.5795
- Study at high momentum range.

Reaction Plane Resolution

Run10 AuAu 200 GeV/c

$v_{2 \text { observe }}=v_{2 \text { real }} \times\left\langle\cos 2\left(\Psi_{\text {real }}-\Psi_{\text {observe }}\right)\right\rangle$
$\delta v_{2} \sim \frac{1}{\left\langle\cos 2\left(\Psi_{\text {real }}-\Psi_{\text {observe }}\right)\right\rangle} \times \frac{1}{\sqrt{N}}$

The observed v_{2} is corrected by the correction factor $<\cos 2 \Delta \Psi>$.
The correction factor is called reaction plane resolution.

PID for π, K and proton

PID for deuteron

PID for \wedge and Φ

v_{2} as p_{T} for 6 particles

- These are characteristic for each particle specie
- Heavy particle is shifted to high momentum
- Collective flow
- Meson, baryon and Ion are deviated at $\mathrm{p}_{\mathrm{T}}>2 \mathrm{GeV} / \mathrm{c}$
- Quark coalescence

KE_{T} scaling

Quark number and KE_{T} scaling

- Consistent for all particles with $K E_{T}$ and number of constituent quark scaling at $K E_{T} / n_{q}<0.7 \mathrm{GeV}$.
- Collective flow of quarks
- They deviate at high $K E_{T} / \mathrm{n}_{\mathrm{q}}$
- This indicate a change of particle and v_{2} production mechanism.

p-n combination

- The $d v_{2}$ is higher than $p v_{2}$ at $\mathrm{p}_{\mathrm{T}}>3 \mathrm{GeV} / \mathrm{c}$.
- Succession of parton number scaling means $\mathrm{p} \mathrm{v}_{2}$ and $\mathrm{n} \mathrm{v}_{2}$ are very similar.
- Coalescence of p-n or 6 quarks?

Beam energy scan with v_{2} analysis

- Different regions of the QCD phase diagram.
- Brake of NCQ scaling
- Threshold of QGP
- Search the Critical point

Reaction Plane Resolution of PHENIX at low energy

Run10 AuAu 200 GeV/c

Run10 AuAu 62 GeV/c

Run10 AuAu $39 \mathrm{GeV} / \mathrm{c}$

The high resolution of RxP allow the measurement of v_{2} at low energy collision

Charged hadron v_{2} in $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=39,62,200 \mathrm{GeV}$

V_{2} have no difference from 200 GeV to 39 GeV

Charged hadron v_{2} in $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=7.7 \mathrm{GeV}$

The magnitude of v 2 at 7.7 GeV is significantly lower than the magnitudes at 39,62 and 200 GeV

PID v_{2} in $\mathrm{V}_{\mathrm{NN}}=39,62 \mathrm{GeV}$

$p+\bar{p}$ is slightly large with n_{q} scaling

Charge separated PID v

> Proton have larger v_{2} than that of anti-proton at low energy collision (39, 62GeV)

Difference v_{2} between $+/$ - charge

- Proton has larger v_{2} than that of anti-proton at low energy collision
- The v_{2} difference is flat to momentum.

$\Delta \mathrm{V}_{2}$ vs collision energy

- $p-\bar{p}$ are deviated at low energy collision
- The v_{2} difference is flat to momentum.
- $\pi-v_{2}$ has slightly larger than π^{+}
- $K v_{2}$ has no difference for +/- charge
- Annihilation effect with large net-baryon ratio?

Summary

- V_{2} of identified particles were measured at $\mathrm{Au}+\mathrm{Au}$
$V_{\mathrm{sN}}=200,62$ and 39 GeV
- V_{2} of all particles are consistent with number of constituent quark scaling at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=200 \mathrm{GeV}$
- Collective flow of quarks
- They are almost consistent at ${ }^{S_{N N}}=62$ and 39 GeV . But p v_{2} is slightly large.
- Proton v_{2} and anti-proton v_{2} are deviated
- The difference increases to low energy collision
- The difference is flat to momentum.
$-\pi-v_{2}$ has slightly larger than π^{+}
- $K v_{2}$ has no difference for $+/$ - charge

Backup

RHIC-STAR

ArXiv:1301.2348v1

RHIC-STAR

ArXiv:1301.2348v1

RHIC-STAR

ArXiv:1301.2348v1

LHC-ALICE

Motivation of RP detector

- Measurement of more precise v_{2} is expected.
- Poor reaction plane resolution was a major limiting factor of PHENIX v_{2} measurement of rare probes such as d, Φ.

Reaction Plane Detector (RxP) has been constructed and installed to PHENIX in 2007.

- Reaction plane resolution of $<\cos 2 \Delta \psi>\sim 0.75$ for minimum bias Au+Au collisions

v_{2} on PHENIX-Run7

Comparison with last one

- p_{T} range is extended to $\mathrm{p}_{\mathrm{T}} \sim 4.5 \mathrm{GeV} / \mathrm{c}$.

$$
\begin{aligned}
& \text { Nucleon number scaling } \\
& \mathrm{V}_{2} / \mathrm{A} \\
& v_{2}^{d} \sim 2 v_{2}^{p}, \quad p_{T}^{d} \sim 2 p_{T}^{p} \\
& \text { - The peak of } d v_{2} \text { is } \\
& \text { expected at } p_{T}=6 \mathrm{GeV} / \mathrm{c} \text {. } \\
& \text { - } D v_{2} \text { and } p v_{2} \text { are very } \\
& \text { similar on } p_{T} / A \text { scaling. } \\
& \text { - It means } p \mathrm{v}_{2} \text { and } \mathrm{n} \mathrm{v}_{2} \\
& \text { are very similar. } \\
& \text { - Coalescence of p-n or } 6 \\
& \text { quarks? }
\end{aligned}
$$

