Measurement of azimuthal anisotropy of hadrons in Au+Au collisions from a beam energy scan by the PHENIX experiment at RHIC.

Yoshimasa Ikeda, RIKEN for the PHENIX collaboration

Azimuthal anisotropy

- Azimuthal anisotropy depends on initial kinematics
 - Elliptical particle emission angle distribution for noncentral collision
- It is measured as 2nd term of Fourier series (V₂)

 $\frac{dN}{d\Phi} \propto 1 + 2v_2 \cos 2(\Phi - \Psi)$

 Ψ : reaction plane angle

Hydro-dynamics model

Large v₂ was observed in RHIC and it is agree with hydro-dynamical models.

Rapid thermalization and low viscosity are assumed in the model.

High resolution measurement of PID hadron v₂

- Comparison with rare particle.
 - Deuteron that is formed by p-n (or 6 quarks) should has higher v₂ than proton.
 - Φ meson has small cross section for hadron scattering. The mass is similar to proton or Λ rather than π or K. 0.25

- Study for low energy collision
- Study at high momentum range.

(b)

p_ (GeV/c)

arXiv:0710.5795

Reaction Plane Resolution

The observed v_2 is corrected by the correction factor $<\cos 2 \Delta \Psi >$. The correction factor is called reaction plane resolution.

PID for π , K and proton

TOF.W was installed before Run7, too

PID for deuteron

PID for Λ and Φ

v_2 as p_T for 6 particles

- These are characteristic for each particle specie
- Heavy particle is shifted to high momentum
 - Collective flow
- Meson, baryon and Ion are deviated at p₁>2GeV/c
 - Quark coalescence

KE_{T} scaling

- The p_T shift depend on mass is described with KE_T
 - They are consistent separately for mesons or baryons.
- Meson line and baryon line approach at high KE₁.

Quark number and KE_{T} scaling

- Consistent for all particles with KE_{T} and number of constituent quark scaling at KE_{T}/n_{q} <0.7GeV.
 - Collective flow of quarks
- They deviate at high KE_T/n_q
 - This indicate a change of particle and v₂ production mechanism.

p-n combination

- The d v_2 is higher than p v_2 at $p_T > 3 GeV/c$.
- Succession of parton number scaling means p v₂ and n v₂ are very similar.
- Coalescence of p-n or 6
 quarks?

Beam energy scan with v_2 analysis

- Different regions of the QCD phase diagram.
- Brake of NCQ scaling
- Threshold of QGP
- Search the Critical point

Reaction Plane Resolution of PHENIX at low energy

The high resolution of RxP allow the measurement of v_2 at low energy collision

Charged hadron v₂ in $\sqrt{s_{NN}} = 39, 62, 200 \text{GeV}$

 V_2 have no difference from 200GeV to 39GeV

Charged hadron
$$v_2$$

in $\sqrt{s_{NN}} = 7.7 \text{ GeV}$

The magnitude of v₂ at 7.7 GeV is significantly lower than the magnitudes at 39, 62 and 200 GeV

PID v_2 in $\sqrt{s_{NN}}$ =39, 62 GeV

p+p is slightly large with n_a scaling

Charge separated PID v₂

Proton have larger v₂ than that of anti-proton at low energy collision (39, 62GeV)

Difference v₂ between +/- charge

- Proton has larger v₂
 than that of anti-proton at low energy collision
 - The v_2 difference is flat to momentum.

9

Δv_2 vs collision energy

- p-p are deviated at low energy collision
 - The v_2 difference is flat to momentum.
- π- v₂ has slightly larger than π+
- K v₂ has no difference for +/- charge
- Annihilation effect with large net-baryon ratio?

Summary

- V₂ of identified particles were measured at Au+Au $\sqrt{s_{_{NN}}}$ =200, 62 and 39GeV
- V₂ of all particles are consistent with number of constituent quark scaling at $\sqrt{s_{_{NN}}}$ =200GeV

Collective flow of quarks

- They are almost consistent at $\sqrt{s_{_{NN}}}$ =62 and 39GeV. But p v_2 is slightly large.
- Proton v_2 and anti-proton v_2 are deviated
 - The difference increases to low energy collision
 - The difference is flat to momentum.
 - π v_2 has slightly larger than π +
 - K v_2 has no difference for +/- charge

Backup

RHIC-STAR

RHIC-STAR

ArXiv:1301.2348v1

RHIC-STAR

ArXiv:1301.2348v1

LHC-ALICE

27

Motivation of RP detector

- Measurement of more precise v₂ is expected.
- Poor reaction plane resolution was a major limiting factor of PHENIX v_2 measurement of rare probes such as d, Φ .

Reaction Plane Detector (RxP) has been constructed and installed to PHENIX in 2007.

 Reaction plane resolution of <cos2⊿ψ> ~0.75 for minimum bias Au+Au collisions

v₂ on PHENIX-Run7

Comparison with last one

• p_T range is extended to $p_T \sim 4.5$ GeV/c.

Nucleon number scaling

 $v_2^d \sim 2 v_2^p$, $p_T^d \sim 2 p_T^p$

- The peak of d v₂ is expected at p₁=6GeV/c.
- D v_2 and p v_2 are very similar on p_T/A scaling.
- It means p v₂ and n v₂ are very similar.
- Coalescence of p-n or 6
 quarks?