QGP Viscosity & Elliptic Flow for Multi-strange Hadrons

> Huichao Song Peking University

SQM 2013

Birmingham, UK, July 22-27, 2013

07/25/2013

 $\begin{aligned} \text{viscous hydrodynamics} \\ \partial_{\mu}T^{\mu\nu}(x) &= \mathbf{0} \qquad T^{\mu\nu} = (e+p+\Pi)u^{\mu}u^{\nu} - (p+\Pi)g^{\mu\nu} + \pi^{\mu\nu} \\ \tau_{\pi}\Delta^{\alpha\mu}\Delta^{\beta\nu}\dot{\pi}_{\alpha\beta} + \pi^{\mu\nu} &= 2\eta\sigma^{\mu\nu} - \frac{1}{2}\pi^{\mu\nu}\frac{\eta T}{\tau_{\pi}}\partial_{\lambda}\left(\frac{\tau_{\pi}}{\eta T}u^{\lambda}\right) \\ \tau_{\Pi}\dot{\Pi} + \Pi &= -\zeta(\partial \cdot u) - \frac{1}{2}\Pi\frac{\zeta T}{\tau_{\Pi}}\partial_{\lambda}\left(\frac{\tau_{\Pi}}{\zeta T}u^{\lambda}\right) \qquad \text{Input: "EOS"} \\ \varepsilon &= \varepsilon(p) \end{aligned}$

Assume zero net baryon density & heat conductivity at RHIC and LHC

Generic features of shear & bulk viscosities

Shear viscosity: η

acts against the buildup of **flow anisotropy**

The shear viscosity leads to a significant suppression of V₂ (Romatsche & Romatsche PRL07; song & Heinz PLB08, PRC08; Dusling & Teaney PRC 08; Molnar & Huovinen JPG 08)

acts against the buildup

of radial flow

Bulk viscosity:

Bulk viscous effects are much smaller than shear ones due to the critical slowing down near phase transition (Song & Heinz PRC09)

One can extract the QGP shear viscosity from exp data without large contaminations from bulk viscosity

QGP viscosity at RHIC and the LHC

-results from the VISHNU hybrid model

VISHNU hybrid approach

H. Song, S. Bass, U. Heinz, PRC2011

VISHNU:

-chemical composition of HRG Hadron -transport properties of HRG Cascade

-EoS: (s95p-PCE) (Huovinen & Petreczky10) -switching temperature: T_{sw}=165MeV -initial conditions Other related developments

-3+1 d viscous hydro+ hadron cascade: Ryu et al., arXiv1210.4588.

-2+1 d vs 3+1 viscous hydro: Shen, Schenke & Heinz on going work;

Vredevoogd &Pratt, PRC85,044908(2012)

V₂ and QGP viscosity at RHIC

The analysis uses:

-integrated V₂ for all charged hadrons: In contrast to V₂(Рт), it is less sensitive to bulk viscosity, *Sf* corrections, radial flow & chemical composition of HRG
-corrected exp. V₂ data that remove non-flow & fluc. effects

V₂ and QGP viscosity at the LHC

The average QGP viscosity is roughly the same at RHIC and LHC Please also refer to C. Gale, et al., ArXiv: 1209.5330 [nucl-th]

Initial state fluctuations, final state correlations & the QGP viscosity

Uncertainties from Initial Conditions

$1 \times (1/4\pi) \le (\eta/s)_{QGP} \le 2.5 \times (1/4\pi)$

Main uncertainties come from initial conditions

MC-KLN, larger $\mathcal{E}_2 \longrightarrow$ HIGHER value of QGP viscosity MC-Glauber, smaller $\mathcal{E}_2 \longrightarrow$ LOWER value of QGP viscosity

MC-KLN & MC-Glauber initializations & V₃

V₃ prefer lower value of QGP viscosity

MC-Glauber & MC-KLN initializations are based on fluctuation of nucleon positions

Theoretical Development on Initialization Models:

- -color charge fluctuations (IP-Glasma, correlated fluctuations)
- -multiplicity fluctuations for local gluon numbers
- -transverse/longitudinal flow fluctuations
- UrQMD, AMPT, EPOS/NUSES

••• ••• •••

Related flow Data:

-elliptic flow

- -triangular flow & higher order flow harmonics
- -higher-order event plane correlations
- -Event by event Vn distributions
- -Vn in ultra-central collisions

A further study of flow data in different aspects, using e-b-e VISHNU will constrain initialization models, tightening the limit on $(\eta/s)_{QGP}$

--Please also refer the work from B. Schenke and OSU group for recent developments

Multiplicity, Spectra and elliptic flow for identified hadrons

RHIC: spectra for identified hadrons

-a nice fit for both pion and proton spectra, insensitive to QGP viscosity

RHIC: $V_2(p_T)$ for identified hadrons

H.Song, S. Bass, U. Heinz, T. Hirano, and C. Shen, PRC2011

LHC: spectra for identified hadrons

H. Song, S. Bass, U. Heinz, in preparations

LHC: $V_2(p_T)$ for identified hadrons

VISHNU

A very nice fit of V₂(P_T) for all centrality bins at LHC from VISHNU hybrid model

LHC: $V_2(p_T)$ for identified hadrons

A comparison between viscous hydrodynamics and VISHNU

dN/dy for identified hadrons (RHIC & LHC)

-VISHNU nicely describes the multiplicity for pions, kaons & protons

dN/dy for identified hadrons (RHIC & LHC)

-VISHNU nicely describes the multiplicity for pions, kaons & protons -B-Bbar annihilations plays an important role for a nice fit of the proton data VISHNU : Tch= 165MeV

dN/dy for identified hadrons (RHIC & LHC)

-VISHNU nicely describes the multiplicity for pions, kaons & protons

-B-Bbar annihilations plays an important role for a nice fit of the proton data

Statistical Model: <u>Tch~ 150 MeV</u>? (no B-Bbar annihilations!) VISHNU : Tch= 165MeV

Elliptic flow for multi-strange hadrons

V2 for multi-strange hadrons (LHC)

Mass ordering of elliptic flow (LHC)

-Roughly reproduce the mass-ordering!

Do these multi-strange hadrons decouple from the system near T_c?

UrQMD/decay freeze-out time distributions

-These multi-strange hadrons are NOTthat weakly coupled with the medium!

UrQMD freezeout time distributions

-Lamba freeze-out even later than pion and protons !

-earlier freeze-out for Xi and Omega!

VISHNU vs Hydro with T_{dec}=165 & 100 MeV

40-50%

2

p_⊤ (GeV)

phi-meson

Elliptic flow for phi at the LHC

1.6

p_T (GeV/c)

Elliptic flow for phi at the LHC

phi V2 in strong & weakly coupling limit

-hydro + T_{dec} =165 MeV weakly coupling limit -hydro + T_{dec} =100 MeV

strong coupling limit VISHNU: small cross sections for phi

Neither the strongly nor the weakly coupling limit nor the cases in between (VISHNU) could explain the massordering between proton & phi shown in experiment

phi-meson puzzle !

QGP viscosity at RHIC and the LHC

Extraction η/s from elliptic flow data using VISHNU indicates: $1 \times (1/4\pi) \le \eta/s \le 2.5 \times (1/4\pi)$ (MC-Glauber; MC-KLN) Approximately similar averaged QGP viscosity at RHIC and LHC energies

Recent developments on initialization models:

color charge fluctuations; multiplicity fluctuations; initial flow fluctuations

to implement e-b-e VISHNU to further study: triangular flow & higher order flow harmonics, higher-order event plane correlations e-b-e $v_n \dots$ will help us to constrain initialization models, tightening the limit on $(\eta/s)_{QGP}$

Spectra & V₂ for identified hadrons (& multi-strange hadrons)

- A nice description of the $p_{\rm T}$ spectra and v_2 for pions, kaons and protons
- VISHNU with B-Bbar annihilations prefer $T_{\rm ch}{=}165~MeV$
- -A nice description for v_2 (p_T) for multi-strangeness at the LHC for various of centrality.
- Fails to describe the phi-v₂(RHIC) within the strongly, weakly coupling limi or VISHNU

Thank you

Spectra for multi-strange hadrons (RHIC)

Au + Au 200 A GeV (RHIC)

V2 for multi-strange hadrons (RHIC)

V2 for multi-strange hadrons (RHIC)

-10-40% :nice description of the experimental data

-High statistic runs are needed in the near future !

-40-80%: non-flow & fluctuation effects

V2 for multi-strange hadrons (RHIC)

Mass ordering of elliptic flow (RHIC)

RHIC: 200 A GeV Au + Au

Initialization Models

-fluctuations of nucleon positions:

MC-Glauber: MC-KLN: T. Hirano & Y. Nara, Phys. Rev. C 79 064904 (2009) (used in the VISHNU hybrid model)

-fluctuations of color charges (in the framework of CGC):

IP-Glasma: B. Schenke et al., arXiv:1202.6646; 1206.6805 [nucl-th] C. Gale, et al., arXiv: 1210.5144, 1209.5330 [nucl-th].

Correlated Fluctuation: B. Muller & A. Schafer, arXiv:1111.3347 [hep-ph] S. Moreland, Z. Qiu and U. Heinz, arXiv:1210.5508

-fluctuations of local gluon numbers (in the famework of MC-KLN):

Multiplicity fluctuations: A. Dumitru and Y. Nara, Phys. Rev. C 85, (2012) 034907 A. Dumitru, arXiv:1210.7864 [hep-ph].

Pre-equilibrium dynamics

Free Streaming limit: G. Qin, et. al., Phys. Rev. C82 064903 (2010); OSU, on-going work **Hydro limit:** OSU group, on-going work

Pre-equilibrium dynamics smoothes out fluctuations, reducing $\mathcal{E}_2, \mathcal{E}_3$, but building radial flow

-early flow & fluctuations from dynamical models:

URQMD initialization: H.Petersen & M. Bleicher, Phys. Rev. C81, 044906,2010

AMPT initialization: L. Pang, Q.Wang & X.N.Wang, arXiv:1205.5019 [nucl-th] L. Pang, Q.Wang & X.N.Wang, arXiv: 1211.1579[nucl-th]

EPOS/NEXUS initialization: K. Werner et al., Phys. Rev. C83:044915,2011; H. J. Drescher et, al., Phys.Rev. C65, 054902 (2002).

IP-Glasma: B. Schenke, et.al, arXiv:1202.6646; 1206.6805 [nucl-th] C. Gale, et al., arXiv:1210.5144, 1209.5330 [nucl-th].

Except IP-Glamsa, most pre-equilibrium dynamics was studied within the ideal hydro framework. Their quantitative influences on $(\eta/s)_{QGP}$ are still unknown.

Extracting η/s from V_n in ultra-central collisions

-In most central collisions, fluctuation effects are dominant (Geometry effects are suppressed)

-can not simultaneously fit V₂ and V₃ with single η/s (MC-Glauber & MC-KLN)

Higher Order Event Plane Correlations

Qiu & Heinz, arXiv:1208.1200[nucl-th]

Pure e-b-e viscous hydro simulations :

CERN preprint ATLAS-CONF-2012-049

qualitatively reproduce the measured event plane correlations

Vn & E-b-E Vn distributions

