Open heavy-flavour results from ALICE

Diego Stocco for the ALICE Collaboration

(Ecole des Mines, CNRS-IN2P3, Université de Nantes) Nantes, France

- How?
- 2 pp collisions at $\sqrt{s} = 2.76$ and 7 TeV
- 3 Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
- **4** p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV: first results

Conclusions 5

Heavy flavours: why?

ALICE

- Heavy quarks are produced in the initial hard scattering processes
- They are exposed to the evolution of the high energy-density medium formed in ultra-relativistic heavy-ion collisions

What can we test?

A-A collisions: probing the high density medium

- Energy loss
 - Color charge dependence $(\Delta E_g > \Delta E_q) \Rightarrow$ compare with light hadrons
 - Quark mass dependence $(\Delta E_c > \Delta E_b) \Rightarrow$ compare charm/beauty
- Thermalization in the QGP (low- $p_{\rm T}$)

Reference needed:

p-p collisions

- Reference to study the effects in A-A collisions
- Test of perturbative QCD

Disentangle the "initial state" effects:

p-A collisions

- Modification of parton distributions in nuclei (shadowing)
- Gluon saturation

ALICE layout

- |η| < 0.9
- ITS, TPC, TOF: vertex, tracking, PID

ALICE layout

- |η| < 0.9
- ITS, TPC, TOF: vertex, tracking, PID
- TRD, EMCal: electron PID

ALICE layout

pp collisions at $\sqrt{s}=$ 2.76 and 7 TeV

pp collisions at $\sqrt{s} = 7$ TeV

• Reminder: *p*_T-differential cross-sections measured in all channels

pp collisions at $\sqrt{s} = 7$ TeV

[FONLL: JHEP 1210 (2012) 137], [GM-VFNS: Eur. Phys. J. C 72 (2012) 2082], [kt

factorisation: arXiv:1301.3033]

D. Stocco

10 12 14 p^e_T (GeV/c)

- Measurement of D meson production vs. charged particle multiplicity in pp collisions at $\sqrt{s} = 7$ TeV
- Motivation:
 - understand the contribution of Multi-Parton Interaction
 - check for any collective behavior in high multiplicity pp collisions (higher mult. than in Cu–Cu collisions at $\sqrt{s_{NN}} = 200$ GeV at RHIC)
 - $\bullet\,$ reference for analogous measurement with J/ $\psi\,$ [ALICE Collab., Phys. Lett. B 712 (2012) 165]

- Increase of yield with multiplicity
- No *p*_T dependence observed with current uncertainties
- Won't go into details here. Please see:

R. Bala. Heavy Flavour 2, Thu. 15:40

Data well described by pQCD calculations [FONLL: JHEP 1210 (2012) 137], [GM-VFNS: Eur. Phys. J. C 72 (2012) 2082]

- HF decay muon data used as reference for Pb–Pb collisions at the same energy
- For other channels (and for p–Pb at 5.02 TeV), due to the limited statistics in pp collisions at $\sqrt{s} = 2.76$ TeV, an extrapolation based on pQCD calculations is performed
 - data at $\sqrt{s} = 2.76$ TeV used to test the scaling

Pb–Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Observables

Nuclear modification factor:

$$\mathsf{R}_{\mathsf{A}\mathsf{A}}(p_{\mathrm{T}}) = rac{1}{\langle \mathcal{T}_{AA}
angle} rac{\mathsf{d} \mathcal{N}_{AA}/\mathsf{d} p_{\mathrm{T}}}{\mathsf{d} \sigma_{pp}/\mathsf{d} p_{\mathrm{T}}}$$

 QCD-based models describing collisional and radiative energy loss in the medium predict: [Dokshitzer et al., PLB 519 (2001) 199], [Armesto et al., PRD 69 (2004) 114003], [Djordjevic et al., NPA 783 (2007) 493], [...]

 \mathbf{I}_{AA} : ratio of yields measured in AA and pp collisions. Used in correlation studies

$$\mathsf{I}_{\mathsf{A}\mathsf{A}} = \frac{\int_{\phi_1}^{\phi_2} \mathsf{d}\Delta\phi \frac{\mathsf{d}N_{AA}}{\mathsf{d}\Delta\phi}}{\int_{\phi_1}^{\phi_2} \mathsf{d}\Delta\phi \frac{\mathsf{d}N_{pp}}{\mathsf{d}\Delta\phi}}$$

- Near side (around $\Delta \phi = 0$): sensitive to fragmenting jet leaving the medium
- Away side (around Δφ = π): sensitive to the probability that the recoiling particle survives the passage through the medium
- * The mass hieararchy holds in the p_{T} range where the quark mass is relevant

ALI-PREL-31917

ALI-PREL-52742

- R_{AA} measured in central (0–10%) and peripheral (40–50%) collisions
 - hint for larger reduction of yields in most central collisions

D. Thomas. Heavy Flavour 2, Thu. 15:00

ALI-DER-36791

ALI-DER-53851

- \bullet R_{AA} measured in central (0–10%) and peripheral (40–50%) collisions
 - hint for larger reduction of yields in most central collisions
- R_{AA} values comparable with muon results at forward rapidity (0–10% and 40–80% centralities)

D. Thomas. Heavy Flavour 2, Thu. 15:00

Heavy-flavour decay electrons IAA

ALICE

D mesons R_{AA}: status so far

- $\bullet\,$ D meson R_{AA} was measured up to $p_{\rm T}=16$ GeV/c with 2010 Pb–Pb data
- pp reference: ALICE results at $\sqrt{s} = 7$ TeV [JHEP 1201 (2012) 128] scaled to $\sqrt{s} = 2.76$ TeV with FONLL [Cacciari et al., JHEP 1210 (2012) 137]
- Larger *p*_T-reach with 2011 data (up to 36 GeV/*c* in 0–7.5% most central collisions)
- \bullet First measurement of D^+_s was shown in QM2012

• Expectation: relative enhancement of the strange/non-strange D meson production at intermediate $p_{\rm T}$ due to recombination/coalescence [Kuznetsova and Rafelski,

Eur. Phys. J. C 51 (2007) 113], [He et al., Phys. Rev. Lett. 110 (2013) 112301], [Andronic, Phys. Lett. B 659 (2008) 149]

D mesons R_{AA}: updates

- 0–50%: 2011 data
- 50–80%: 2010 data

 D meson production vs. centrality in several $p_{\rm T}$ bins

D^0 , $3 < p_T < 5 \text{ GeV}/c$

ALTCE

$8 < p_{\rm T} < 16 \, {\rm GeV}/c$

E. Bruna. Heavy Flavour 2, Thu. 15:20

SQM 2013 - Birmingham 21 - 27 Jul. 2013

D mesons R_{AA}: comparison with non-prompt J/ψ

ALICE

- \bullet Testing the mass hierarchy of energy loss. Expected: $R_{AA}(c){<}R_{AA}(b)$
- First comparison performed in 2012, however: $\langle p_{\rm T}^D \rangle \neq \langle p_{\rm T}^{B(\to {\rm J}/\psi)} \rangle$
- $\bullet\,$ New data allow for a comparison in a compatible $p_{\rm T}$ range of D and of the parent B of non-prompt ${\rm J}/\psi$

 Indication of smaller energy loss for beauty than charm

D mesons R_{AA}: comparison with non-prompt J/ψ

ALICE

- \bullet Testing the mass hierarchy of energy loss. Expected: $R_{AA}(c){<}R_{AA}(b)$
- First comparison performed in 2012, however: $\langle p_{\rm T}^D \rangle \neq \langle p_{\rm T}^{B(\to {\rm J}/\psi)} \rangle$
- $\bullet\,$ New data allow for a comparison in a compatible $p_{\rm T}$ range of D and of the parent B of non-prompt ${\rm J}/\psi$

- Indication of smaller energy loss for beauty than charm
- A challenge for models [BAMPS: J. Phys. G 38 (2011) 124152], [WHDG: J. Phys. G 38 (2011) 124114], [Vitev et al., Phys. Rev. C 80 (2009) 054902]

D mesons RAA: comparison with pions

New: comparison of R_{AA} of D⁰ and

pion vs. centrality at low- $p_{\rm T}$

- Testing the color charge dependence of energy loss. Expected: $R_{AA}(light hadrons) < R_{AA}(c)$
- Comparison with pions in most central collisions performed in 2012: similar R_{AA} at high- p_{T} ; hint for difference for $p_{\rm T} < 5 ~{\rm GeV}/c$
- ⊈ ≝1.4 Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ D⁰ meson, lvl<0.5 Ч 1.2 Uncorrelated syst. uncertainties b, ≬s_{NN} = 2.76 TeV New Correlated syst. uncertainties π[±], |y|<0.8 1.6 2<p_<3 GeV/c Average D⁰, D⁺, D^{*+} |y|<0.5, 0-7.5% owith pp p-extrapolated reference 1.4 8.0 Charged particles, |η|<0.8, 0-10%</p> 1.2 Charged pions. ml<0.8, 0-10% 0.6 0.4 0.8 0.2 0.6 0.4 100 150 200 250 300 350 400 0.2 (N_{nart} weighted with N_{nart} ALI-DER-52746 15 20 25 30 35 40 p_{_} (GeV/c) ALI-DER-56048

Azimuthal anisotropy

- Spatial anisotropy is converted via multiple collisions into an anisotropic momentum distribution
- Reaction plane (Ψ_{RP}): defined by the beam axis and the impact parameter vector of the two colliding nuclei
- Azimuthal distributions of particles measured with respect to the reaction plane can be expanded in a Fourier series:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\rho} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{\rho_{\mathrm{T}}\mathrm{d}\rho_{\mathrm{T}}\mathrm{d}y}\left(1+\sum_{n=1}^{\infty}2\nu_{n}\cos\left(n(\phi-\Psi_{RP})\right)\right)$$

• The elliptic flow is defined as:

$$\mathbf{v}_2 = \langle \cos(2(\phi - \Psi_{RP}))
angle$$

ALICE

- Elliptic flow of muons from heavy-flavour decays measured in 2.5 < y < 4
- Dataset: 2011 Pb–Pb run

- v_2 increases from central to peripheral collisions in the measured range (0–40%)
- Non-zero v_2 (3 σ) observed in the centrality class 20–40%

- ALICE
- Elliptic flow of muons from heavy-flavour decays measured in 2.5 < y < 4
- Dataset: 2011 Pb–Pb run

- v_2 increases from central to peripheral collisions in the measured range (0-40%)
- Non-zero v_2 (3 σ) observed in the centrality class 20–40%
- Similar v₂ values for heavy-flavour decay muons at forward rapidity and heavy-flavour decay electrons at mid-rapidity
 A. Dubla. Poster

Comparison with models

D mesons

[BAMPS: J. Phys. G 38 (2011) 124152: Phys. Lett. B 717 (2012) 430] [POWLANG: Eur. Phys. J C 71 (2011) 1666] [UrQMD: arXiv:1211.6912, J. Phys. Conf. Ser. 426, 012032 (2013)] [TAMU: Phys. Rev. C 86 (2012) 014903] [WHDG: J. Phys. G 38 (2011) 124114] [Aichelin et al., Phys. Rev. C 79 (2009) 044906, J. Phys. G 37 (2010) 094019]

Heavy-flavour decay muons

- Simultaneous reproduction of R_{AA} and v_2 is challenging for models
- Reduction of statistical and systematic uncertainties needed for data

p–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV: first results

D mesons R_{pPb}

- Dataset: 2013 p–Pb data
- pp reference: ALICE results at $\sqrt{s} = 7$ TeV [JHEP 1201 (2012) 128] scaled to $\sqrt{s_{NN}} = 5.02$ TeV with FONLL [Cacciari et al., JHEP 1210 (2012) 137]
- $\bullet\,$ Compatible results for D^0, D^+, D^{*+} and D^+_s
- All measurements compatible with 1 within uncertainties

p-Pb, Vs_{NN} = 5.02 TeV

minimum bias

 D_{c}^{+}

+ D⁺_s meson, -0.04<y_{cms}<0.96 total syst. uncertainties

pp reference syst. uncertainties

prompt

Heavy-flavour decay electrons R_{pPb}

- Dataset: 2013 p-Pb data
- op reference:
 - $p_{\rm T}<8~{\rm GeV/c:}$ ALICE results at $\sqrt{s}=7~{\rm TeV}$ [Phys. Rev. D 86 (2012) 112007] scaled to $\sqrt{s_{NN}}=5.02~{\rm TeV}$ with FONLL [Cacciari et al., JHEP 1210 (2012) 137]
 - \dot{p}_{T} > 8 GeV/c: FONLL extrapolation

Consistent results with two analyses based on different PID strategies

Heavy-flavour decay electrons R_{pPb}

ALICE

- Dataset: 2013 p-Pb data
- op reference:
 - $p_{\rm T}<8~{\rm GeV}/c:$ ALICE results at $\sqrt{s}=7~{\rm TeV}$ [Phys. Rev. D 86 (2012) 112007] scaled to $\sqrt{s_{NN}}=5.02~{\rm TeV}$ with FONLL [Cacciari et al., JHEP 1210 (2012) 137]
 - \dot{p}_{T} > 8 GeV/c: FONLL extrapolation

ALI-PREL-53256

- Consistent results with two analyses based on different PID strategies
- Results comparable with PHENIX [Phys. Rev. Lett. 109 (2012) 242301]

Heavy-flavour R_{pPb}: comparison with shadowing

 Results compared to MNR [Mangano et al., Nucl. Phys. B 373 (1992) 295] calculations for heavy-flavour production with EPS09 [Eskola et al., JHEP 0904 (2009) 065] parameterization of shadowing

• Calculations in agreement with data within uncertainties

Heavy-flavour R_{pPb}: comparison with shadowing

 Results compared to MNR [Mangano et al., Nucl. Phys. B 373 (1992) 295] calculations for heavy-flavour production with EPS09 [Eskola et al., JHEP 0904 (2009) 065] parameterization of shadowing

- Calculations in agreement with data within uncertainties
- Data in agreement with CGC predictions as well [Fujii-Watanabe, priv. comm.]

Heavy-flavour R_{pPb}: comparison with shadowing

 Results compared to MNR [Mangano et al., Nucl. Phys. B 373 (1992) 295] calculations for heavy-flavour production with EPS09 [Eskola et al., JHEP 0904 (2009) 065] parameterization of shadowing

- Calculations in agreement with data within uncertainties
- Data in agreement with CGC predictions as well [Fujii-Watanabe, priv. comm.]
- Small "initial state" effects \Rightarrow the strong suppression at high- p_T observed in Pb–Pb collision is a Quark Gluon Plasma effect

Conclusions

Conclusions (I)

• The heavy-flavour measurements of ALICE in pp collisions at $\sqrt{s} = 2.76$ and 7 TeV, Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and the first results in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV have been presented

pp collisions

- Perturbative QCD calculations **well describe all data** ⇒ used to extrapolate the results at different energies for Pb–Pb and p–Pb studies
- D meson yields measured as a function of charged particle multiplicity

Pb-Pb collisions

- Measurement of heavy-flavour decay electron R_{AA} extended to peripheral centralities
- D mesons R_{AA} measured as a function of $\langle N_{part} \rangle$ in several $p_{\rm T}$ bins
 - updated comparison with non-prompt $J/\psi \Rightarrow$ indication of larger suppression for charm than for beauty
 - updated comparison with pion ${\sf R}_{\sf AA}$ at low $p_{\rm T}$ \Rightarrow no strong conclusion can be drawn with present uncertainties
- Analysis of D meson elliptic flow finalized: paper [arXiv:1305.2707] submitted to PRL
- Measurement of elliptic flow of muons from heavy-flavour decays at forward rapidity: **non-zero** v_2 **observed** in the centrality class 20–40% at 3σ

p-Pb collisions

- $\bullet\,$ First heavy-flavour measurements in p–A collisions at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$ with ALICE
 - $R_{pPb}(p_T)$ of D mesons and electrons from heavy-flavour decays
- Results consistent with perturbative QCD calculations including shadowing
- Small effect observed in the transverse momentum range measured in Pb–Pb collisions \Rightarrow the observed suppression at high momenta in Pb–Pb collisions is a Quark-Gluon Plasma effect

Backup slides

Trigger and centrality

pp collisions

- Minimum Bias (MB): V0A or V0C or SPD
- MUON: MB + single muon trigger

Pb–Pb collisions

- MB: V0A and V0C
- MUON: MB + single muon trigger

• Centrality selection based on a geometrical Glauber model fit of the V0 amplitude

- Data scaled with the ratio of FONLL [JHEP 1210 (2012) 137] cross sections at the two energies
- Scaling procedure checked by comparing with existing data

 D^0

Heavy flavours in the semi-electronic decay channel

- Background subtraction:
 - e^+e^- invariant mass method: removes Dalitz decay and photon conversion
 - cocktail: MC hadron generator for different background sources

Beauty measurement:

- B decay $c\tau = 500 \ \mu m$
- cut on impact parameter to enhance S/B
- subtract residual e from D decay: input from measured D mesons

 complementary method based on fit to MC templates of e-hadron correlation shapes for D and B (exploit the larger width of the near-side peak for B-hadron decays)

Heavy flavours in the semi-muonic decay channel

ALICE

- Track selection:
 - Match track with tracklet in the trigger chambers ⇒ reject punch-through hadrons
 - *p* × DCA cut ⇒ reject tracks from beam-gas interaction

- Background subtraction:
 - bkg. contribution decreases with $p_{\mathrm{T}} \Rightarrow$ focus on $p_{\mathrm{T}} \ge 2 \ \mathrm{GeV}/c$
 - main background source: muons from pion and kaon decays
 - subtraction using MC simulations as input (Pythia, Phojet)

Heavy-flavour RAA: further comparisons with models

Comparison with models [BAMPS: Phys. Lett. B 717 (2012) 430], [Rapp et al.: arXiv:1208.0256], [POWLANG: J. Phys. G 38 (2011) 124144], [Djordjevic, arXiv:1307.4098], [BDMPS-ASW, Phys. Rev. D 71 (2005) 054027], [WHDG: J. Phys. G 38 (2011) 124114], [Rad+dissoc: Vitev et al., Phys. Rev. C 80 (2009) 054902]

• Results compatible with PHENIX data in Au–Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ [PHENIX: Phys. Rev. C 84 (2011) 044905]

ALICE

- Results compatible with PHENIX data in Au–Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ [PHENIX: Phys. Rev. C 84 (2011) 044905]
- Simultaneous reproduction of R_{AA} and v_2 is challenging for models [BAMPS: Phys. Lett. B 717 (2012) 430], [Rapp et al.: arXiv:1208.0256], [POWLANG: J. Phys. G 38 (2011) 124144]

- Results in agreement with BAMPS predictions [BAMPS: Phys. Lett. B 717 (2012) 430] within errors
- Rapp's model (collisional elastic processes with strong coupling) [Rapp et al.: arXiv:1208.0256] tend to underestimate data points.

D meson cross sections in p-Pb collisions

ALICE