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Quark matter in compact stars

\Conventional scenario\ ’Strange Matter Hypothesis

Bodmer 1971; Witten 1984; Farhi, Jaffe 1984
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Two scenarios for quark matter

\Conventional scenario‘ ’Strange Matter Hypothesis‘
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Nuclear—quark matter transition

) Vacuum—quark matter transition
at high pressure, (ficrit, Perit)

at (b = psqm, p=0.
Strange quark matter (SQM) is the
favored phase down to p = 0.



Stars under the Strange Matter Hypothesis
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Strangelet crust

At zero pressure, if its surface tension is low enough ,

strange matter, like nuclear matter, will undergo charge separation
and evaporation in to charged droplets.
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Charge separation: a generic feature

Q=

—-p A neutral
vacuum SQM¢

charge-separated

phase

neutral

He
-

_lgep 7777777777777

dQ2

charge density p = 7
He

Neutral quark matter and
neutral vacuum can coexist
at zero pressure.

But if they have different
electrostatic potentials e
then ps, > 0 and it is
preferable* to form a
charge-separated phase with
intermediate (..

% unless surface costs are too high, e.g. surface tension, electrostatic energy from

E = Vie.



Strange quark matter objects

Similar to nuclear matter objects, if surface tension is low enough.
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Strange Matter Hypothesis summary

» Strange matter is the true ground state at zero pressure.

» For a compact star, ground state is strange matter, perhaps with a
strangelet or nuclear matter crust.

» Neutron stars will convert to strange stars if hit by a strangelet.

» Regular matter is immune since strangelets are positively charged.
» If surface tension of strange matter is low enough, it will form
atoms, planets, dwarfs, compact stars, roughly like nuclear matter.
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Is SMH ruled out by observations of neutron stars?

» X-ray bursts oscillations indicate ordinary nuclear crust
(Watts, Reddy astro-ph/0609364). But. ..
— Maybe nuclear crust can show similar behavior?
— Maybe strangelet crust can show similar behavior?

» Would cosmic strangelet flux be large enough to convert all
neutron stars? (Friedman, Caldwell, 1991)7
Depends on SQM params (Bauswein et. al. arXiv:0812.4248).



Conventional hypothesis

Transition from nuclear matter to quark matter occurs at high pressure.
Compact stars have nuclear crust/mantle, possible quark matter core.
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Signatures of quark matter in compact stars

Microphysical properties

< Phases of dense matter
(and neutron star structure)

Observable <«

Property Nuclear phase  Quark phase
known unknown;
up to ~ Ny many models

mass, radius eqn of state ¢(p)




Signatures of quark matter in compact stars

Observable <«

Microphysical properties

< Phases of dense matter
(and neutron star structure)
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Nucl/Quark EoS ¢(p) = Neutron star M(R)
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Can quark matter be the favored phase at high density?



A fairly generic QM EoS

Model-independent parameterization based on Classical Ideal Gas (CIG)
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Constraints on QM EoS from max mass
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e Max mass can constrain QM EoS but not rule out generic QM
e For soft NM EoS, need céM >0.4



r-modes and old pulsars

r-modes cause fast-spinning stars to spin down = exclusion regions
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r-modes and young pulsar spindown
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Conventional Scenario summary

» Critical density for nuclear—quark transition is unknown.
Neutron stars may have quark matter cores.

» We need signatures that are sensitive to properties of the core

» Mass-radius curve

Cooling (e.g. Cas. A)

Spindown (r-mode exclusion regions)

Glitches

Grav waves? (Spindown, mergers, “mountains”)
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» We need to understand quark matter phases and how their
properties are manifested in these signature behaviors.



The future

» Neutron stars:

More data on neutron star mass, radius, age, temperature, etc.
Better understanding of nuclear matter properties

r-mode damping mechanisms

Color supercond. crystalline phase (glitches) (gravitational waves?)
CFL phase: superconductor with unstable vortices
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» Quark matter properties:

Intermediate density phases

Role of large magnetic fields

Better models of quark matter: PNJL, Schwinger-Dyson
Better weak-coupling calculations

Solve the sign problem and do lattice QCD at high density
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