Strange quark matter in neutron stars

Prof. Mark Alford
Washington University in St. Louis

SQM 2013
A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)
Quark matter in compact stars

Conventional scenario

Neutron/hybrid star

Strange Matter Hypothesis

Bodmer 1971; Witten 1984; Farhi, Jaffe 1984

Strange star

neutron star

hybrid star

nuclear crust

SQM

NM

nuclear crust

strangelet

SQM
Two scenarios for quark matter

Conventional scenario

Vac \rightarrow NM \rightarrow QM

- Nuclear \rightarrow quark matter transition at high pressure, $(\mu_{\text{crit}}, p_{\text{crit}})$

- p_{crit} (310 MeV)

Strange Matter Hypothesis

Vac \rightarrow QM

- Vacuum \rightarrow quark matter transition at $\mu = \mu_{\text{sqm}}$, $p = 0$.
- Strange quark matter (SQM) is the favored phase down to $p = 0$.

μ_{sqm} (310 MeV)
Stars under the Strange Matter Hypothesis

- SQM
- Strangelet crust
- Nuclear crust
At zero pressure, if its surface tension is low enough, strange matter, like nuclear matter, will undergo charge separation and evaporation into charged droplets.

\[\sigma_{\text{crit}} \lesssim 10 \text{ MeVfm}^{-2} \]

Crust thickness
\[\Delta R \lesssim 1 \text{ km} \]

Jaikumar, Reddy, Steiner, nucl-th/0507055

Alford, Eby, arXiv:0808.0671

Jaikumar, Reddy, Steiner, nucl-th/0507055
Neutral quark matter and neutral vacuum can coexist at zero pressure.

But if they have different electrostatic potentials μ_e then $p_{\text{sep}} > 0$ and it is preferable* to form a charge-separated phase with intermediate μ_e.

* unless surface costs are too high, e.g. surface tension, electrostatic energy from $E = \nabla \mu_e$.

Charge density $\rho = \frac{d\Omega}{d\mu_e}$
Strange quark matter objects

Similar to nuclear matter objects, if surface tension is low enough.

Alford, Han arXiv:1111.3937
Strange Matter Hypothesis summary

- Strange matter is the true ground state at zero pressure.
- For a compact star, ground state is strange matter, perhaps with a strangelet or nuclear matter crust.
- Neutron stars will convert to strange stars if hit by a strangelet.
- Regular matter is immune since strangelets are positively charged.
- If surface tension of strange matter is low enough, it will form atoms, planets, dwarfs, compact stars, roughly like nuclear matter.
Strange Matter Hypothesis summary

- Strange matter is the true ground state at zero pressure.
- For a compact star, ground state is strange matter, perhaps with a strangelet or nuclear matter crust.
- Neutron stars will convert to strange stars if hit by a strangelet.
- Regular matter is immune since strangelets are positively charged.
- If surface tension of strange matter is low enough, it will form atoms, planets, dwarfs, compact stars, roughly like nuclear matter.

Is SMH ruled out by observations of neutron stars?

- X-ray bursts oscillations indicate ordinary nuclear crust (Watts, Reddy astro-ph/0609364). But...
 - Maybe nuclear crust can show similar behavior?
 - Maybe strangelet crust can show similar behavior?

- Would cosmic strangelet flux be large enough to convert all neutron stars? (Friedman, Caldwell, 1991)?
 Depends on SQM params (Bauswein et. al. arXiv:0812.4248).
Conventional hypothesis

Transition from nuclear matter to quark matter occurs at high pressure. Compact stars have nuclear crust/mantle, possible quark matter core.

![Diagram](image_url)

Nuclear matter \rightarrow quark matter at high pressure, $(\mu_{\text{crit}}, p_{\text{crit}})$

Vacuum \rightarrow nuclear matter \rightarrow quark matter

n-star

hybrid

star

μ

ν

p

310MeV

μ_{crit}

p_{crit}
Signatures of quark matter in compact stars

Observable ← Microphysical properties (and neutron star structure) ← Phases of dense matter

<table>
<thead>
<tr>
<th>Property</th>
<th>Nuclear phase</th>
<th>Quark phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass, radius</td>
<td>eqn of state $\varepsilon(p)$ known up to $\sim n_{\text{sat}}$</td>
<td>unknown; many models</td>
</tr>
</tbody>
</table>
Signatures of quark matter in compact stars

Observable \[\text{Microphysical properties (and neutron star structure)} \] \[\text{Phases of dense matter} \]

<table>
<thead>
<tr>
<th>Property</th>
<th>Nuclear phase</th>
<th>Quark phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass, radius</td>
<td>eqn of state $\varepsilon(p)$ known up to $\sim n_{\text{sat}}$</td>
<td>unknown; many models</td>
</tr>
<tr>
<td>spindown (spin freq, age)</td>
<td>bulk viscosity, shear viscosity</td>
<td>Depends on phase: n,p,e, n,p,e, μ</td>
</tr>
<tr>
<td>cooling (temp, age)</td>
<td>heat capacity, neutrino emissivity, thermal cond.</td>
<td>Depends on phase: n,p,e, Λ, Σ^-, n superfluid, p supercond, π condensate, K condensate, LOFF, 1SC, 2SC, CFL, $\text{CFL-}K^0$, CSL, LOFF, 1SC, ...</td>
</tr>
<tr>
<td>glitches (superfluid, crystal)</td>
<td>shear modulus, vortex pinning energy</td>
<td></td>
</tr>
</tbody>
</table>
Nucl/Quark EoS $\varepsilon(p) \Rightarrow$ Neutron star $M(R)$

Can quark matter be the favored phase at high density?

Recent measurement:

$M = 1.97 \pm 0.04 M_\odot$

A fairly generic QM EoS

Model-independent parameterization based on Classical Ideal Gas (CIG)

\[\varepsilon(p) = \varepsilon_{\text{trans}} + \Delta \varepsilon + c_{\text{QM}}^{-2}(p - p_{\text{crit}}) \]

Zdunik, Haensel, arXiv:1211.1231
Alford, Han, Prakash, arXiv:1302.4732

QM EoS params: \(p_{\text{trans}} / \varepsilon_{\text{trans}}, \Delta \varepsilon / \varepsilon_{\text{trans}}, c_{\text{QM}}^{2} \)
Constraints on QM EoS from max mass

QM + Soft Nuclear Matter

QM + Hard Nuclear Matter

Max mass can constrain QM EoS but not rule out generic QM

For soft NM EoS, need $c_{QM}^2 \gtrsim 0.4$
r-modes and old pulsars

r-modes cause fast-spinning stars to spin down \(\Rightarrow \) exclusion regions

\(T \) [K] \(f \) [Hz]

Nuclear, viscous damping only
Nuclear with some core-mantle friction
Nuclear with maximum core-mantle friction
Free quarks
Quarks with non-Fermi corrections

(Schwenzer, arXiv:1212.5242)
r-modes and young pulsar spindown

(Alford, Schwenzer arXiv:1210.6091)
Conventional Scenario summary

- Critical density for nuclear→quark transition is unknown. Neutron stars may have quark matter cores.
- We need signatures that are sensitive to properties of the core
 - Mass-radius curve
 - Cooling (e.g. Cas. A)
 - Spindown (r-mode exclusion regions)
 - Glitches
 - Grav waves? (Spindown, mergers, “mountains”)
- We need to understand quark matter phases and how their properties are manifested in these signature behaviors.
The future

- Neutron stars:
 - More data on neutron star mass, radius, age, temperature, etc.
 - Better understanding of nuclear matter properties
 - r-mode damping mechanisms
 - Color supercond. crystalline phase (glitches) (gravitational waves?)
 - CFL phase: superconductor with unstable vortices

- Quark matter properties:
 - Intermediate density phases
 - Role of large magnetic fields
 - Better models of quark matter: PNJL, Schwinger-Dyson
 - Better weak-coupling calculations
 - Solve the sign problem and do lattice QCD at high density