p-Pb with ALICE

Andreas Morsch on behalf of the ALICE Collaboration

Strangeness in Quark Matter Birmingham, July 252013

Outline

- Interesting new results from the low- and intermediate p_{T} region
- Mean p_{T} vs multiplicity
- v_{2} of identified particles from 2-particle correlations
- Not explained by an incoherent superposition of proton-nucleon (pN) collisions.
- Indication for collective effects in p-Pb
- To assess nuclear modifications at high p_{T}
- Test binary collisions ($N_{\text {coll }}$) scaling
- Important results concerning biases on the scaling
- Emphasis on centrality in p-Pb

Mean p_{T} in $\mathrm{pp}, \mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$

ALICE

- Three different $\sqrt{ } s$, but $\sqrt{ } s$ dependence expected to be weak (known from pp)
- Much stronger increase wrt Pb-Pb
- $\mathrm{p}-\mathrm{Pb}<p_{\mathrm{T}}>$ follows pp in region up
to $N_{\mathrm{ch}} \approx 14$
$N_{\text {ch }}>14$ corresponds to
10% of pp x-section:
- pp already highly biased
50% of pPb x-section
- only centrality bias

Scaling with multiplicity
~ number of parton-parton interactions (number of initial strings)?
 Andreas Morsch, SQM 2013, July 22-27 2013
pp

- Within PYTHIA model strong increase with $N_{\text {ch }}$ attributed to Color Reconnections between hadronizing strings.
- Can be seen as a collective final state effect.

pPb

- Glauber MC of incoherent superposition of pN collisions but including measured $<p_{\mathrm{T}}>$ dependence in pp cannot reproduce $\mathrm{p}-\mathrm{Pb}$ data!
- Situation like in pp?
- Do we need coherent effects between strings formed by different pN collisions ?
- EPOS includes collective effects and reproduces the data,

PbPb

- HIJING, AMPT get trend right. EPOS has different shape for very peripheral collisions.

$<p_{\mathrm{T}}>$ vs Charged Multiplicity for Identified Particles

Flow Pattern in $\Delta \eta-\Delta \varphi$ Correlations

New results with identified particles ...

v_{2} from Fourier decomposition of $\Delta \varphi$ - projection

v_{2} from h-($\left.\pi, \mathrm{K}, \mathrm{p}\right)$ Correlations

$\mathrm{p}-\mathrm{Pb}$

Pb-Pb 10-20\%

Mass ordering like in Pb-Pb!

Centrality in $\mathrm{p}-\mathrm{Pb}$ and Binary Collision Scaling

Nuclear Modification Factor for p-Pb MB

ALICE, arXiv:1210.4520

$$
R_{\mathrm{pA}}^{M B}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} N^{\mathrm{pA}} / \mathrm{d} p_{\mathrm{T}}}{\left\langle T_{\mathrm{pA}}\right\rangle \mathrm{d}^{\mathrm{pp}} / \mathrm{d} p_{\mathrm{T}}}=\frac{\mathrm{d} N^{\mathrm{pA}} / \mathrm{d} p_{\mathrm{T}}}{\left\langle N_{\mathrm{coll}}\right\rangle \mathrm{d} N^{\mathrm{pp}} / \mathrm{d} p_{\mathrm{T}}}
$$

Average $\mathrm{p}-\mathrm{Pb}$ overlap function $<T_{\mathrm{pA}}>$ determined by total (geometric) p-A cross-section:

$$
\begin{aligned}
& \left\langle N_{\mathrm{coll}}\right\rangle=208 \sigma_{\mathrm{pN}} / \sigma_{\mathrm{pA}}=6.9 \text { with } \\
& \sigma_{\mathrm{pN}}=70 \mathrm{mb} \\
& \sigma_{\mathrm{pPb}}=2100 \mathrm{mb} \\
& \left\langle T_{\mathrm{pPb}}\right\rangle=\left\langle N_{\mathrm{coll}}\right\rangle / \sigma_{\mathrm{pN}}=208 / 2100 \mathrm{mb}^{-1}=0.098 \mathrm{mb}^{-1}
\end{aligned}
$$

How can we make this measurement centrality dependent?

$$
R_{\mathrm{pA}}^{\text {cent }}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} \mathrm{~N}^{\mathrm{pA}} / \mathrm{d} p_{\mathrm{T}}}{\left\langle T_{\mathrm{pA}}^{\text {cent }}\right\rangle \mathrm{d} \sigma^{\mathrm{pp}} / \mathrm{d} p_{\mathrm{T}}}=\frac{\mathrm{d} N^{\mathrm{pA}} / \mathrm{d} p_{\mathrm{T}}}{\left\langle N_{\mathrm{coll}}^{\text {con }}\right\rangle \mathrm{d} N^{\mathrm{pp}} / \mathrm{d} p_{\mathrm{T}}}
$$

p-Pb Nuclear Effects ...

ALICE

- ... can be quantified by comparison to incoherent superposition of pnucleon collisions
- Centrality event classes defined using centrality estimators
- Particle multiplicity or summed energy in given pseudo-rapidity region
- For each centrality class, two independent questions
- Q1 How many collisions: $N_{\text {part }}, N_{\text {coll }}$?
- These are relative small numbers in $\mathrm{p}-\mathrm{Pb}$
- Fluctuations are important.
- Q2 How unbiased are the nucleon-nucleon collisions?

Detectors for Centrality Estimation

ALICE

Quartz-Fiber "Spaghetti" Zero Degree Calorimeters

$$
z= \pm 112.5 \mathrm{~m}
$$

Centrality Estimators discussed here:
CL1: Clusters in $2^{\text {nd }}$ Pixel Layer VOA: VOA Multiplicity VOM: VOA+VOC Multiplicity ZNA: ZNA Energy

Estimators sensitive to ..

ALICE

Glauber Fit with NBD in $\mathrm{p}-\mathrm{Pb}$

ALICE

- Same procedure as for Pb-Pb (ALICE, arXiv:1301.4361)
- Centrality classes: Multiplicity distribution sliced into percentiles of cross-section
- Starting with the highest multiplicity = most central collisions
- Obtain $P\left(N_{\text {part }}\right)$ from Glauber Monte Carlo
- $N_{\text {part }}$ is equal to number of ancestors

$$
N_{\text {coll }}=N_{\text {part }}-1
$$

- For each ancestor obtain multiplicity form Negative Binomial Distribution (NBD) and iterated to fit NBD parameters
- Obtain $<N_{\text {coll }}>$ for each centrality class

Negative Binomial Distribution :

$$
\begin{gathered}
f(k ; r, p)=\binom{k+r-1}{k}(1-p)^{r} p^{k} \\
\text { Mean }: \mu=\frac{p r}{1-p} \\
\text { Variance: } \sigma^{2}=\mu+\frac{\mu^{2}}{r}
\end{gathered}
$$

Glauber Fit Results

ALICE

Glauber MC Parameters

$$
\rho(r)=\rho_{0} \frac{1}{1+\exp \left(\frac{r-R}{a}\right)}
$$

Centrality	$\left\langle N_{\text {coll }}\right\rangle$ $C L 1$	$\left\langle N_{\text {coll }}\right\rangle$ VOM	$\left\langle N_{\text {coll }}\right\rangle$ VOA		Impact Parameter Slicing
$0-5 \%$	15.4	15.8	14.8	6.8%	14.4
$5-10 \%$	13.5	13.7	13.1	4.5%	13.8
$10-20 \%$	12.0	12.1	11.7	3.4%	12.7
$20-40 \%$	9.3	9.4	9.4	1.1%	10.2
$40-60 \%$	6.0	6.1	6.5	6.6%	6.3
$60-80 \%$	3.46	3.33	3.85	16%	3.1
$80-100 \%$	1.86	1.67	1.94	16%	1.44

- $N_{\text {coll }}$ similar for different estimators
- Similar to MC closure and Glauber MC systematic error.
- Systematic error estimated by varying Glauber MC parameters.
- MC closure test performed with HIJING.

Biases on pN Collisions?

ALICE

Compared to $\mathrm{Pb}-\mathrm{Pb}$

- Looser correlation between $N_{\text {part }}$ and impact parameter (b)

- Looser correlation between $N_{\text {part }}$ and Multiplicity

What distinguishes cent1 from cent2 for the same $N_{\text {coll }}$ Is it relevant for other physics observables ?

More Information from Glauber MC

ALICE

Multiplicity / $N_{\text {part }}$ strongly biased for peripheral and central collisions.

Mean nucleon-nucleon impact parameter increases in peripheral collisions.

Also softer than average collisions ?
Is there any dynamic interpretation of these fluctuations?

Biases and Binary Scaling

- Models based on multi-parton interaction (MPI) include intrinsically a fluctuating number of particles sources (hard scatterings). For example HIJING (X.N. Wang and M. Gyulassy, nucl-th/9502021)
Mean number of scatterings per event obtained from impact parameter $b_{\text {NN }}$ dependent proton-nucleon overlap function $T_{N}\left(b_{N N}\right)$

$$
\left\langle n_{\text {hard }}\right\rangle\left(b_{\mathrm{NN}}\right)=\sigma_{\text {hard }} T_{\mathrm{N}}\left(b_{\mathrm{NN}}\right)
$$

Poissonian probability for multiple hard interaction

$$
p_{i}\left(b_{\mathrm{NN}}\right)=\frac{\left\langle n_{\text {hard }}\right\rangle^{i}}{i!} \exp \left(-\left\langle n_{\text {hard }}\right\rangle\right)
$$

Link between multiplicity fluctuations (bias) and number of hard scatterings !

Qualitatively Two New Elements

$$
R_{\mathrm{pA}}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} N^{\mathrm{pA}} / \mathrm{d} p_{\mathrm{T}}}{N_{\text {coill }}^{?} \mathrm{~d} N^{\mathrm{pp}} / \mathrm{d} p_{T}}
$$

- For a given centrality percentile hard processes scale with

$$
N_{\text {coll }}^{\text {Glauber }}\left\langle n_{\text {hard }}\right\rangle_{\text {cent }} /\left\langle n_{\text {hard }}\right\rangle_{\mathrm{pp}}
$$

- For a given $\mathrm{p}-\mathrm{Pb}$ impact parameter $b,<n_{\text {hard }}>$ depends on the average pN impact parameter $<b_{\mathrm{NN}}>$
- Mainly important for peripheral collisions
- Here multiplicity cut acts also as a veto for hard processes.

Insights from Monte Carlo

ALICE
$N_{\text {coll }}$ scaling: $n_{\text {hard }} / N_{\text {coll }}=$ const.

Number of hard scatterings per p-N collision - vs $N_{\text {coll }}$ (no multiplicity bias here!)

- Deviation from $N_{\text {coll }}$ scaling
- at low $N_{\text {coll }}$: geometry $b_{\text {NN }}$
- at high $N_{\text {coll }}$: energy conservation (break down of factorization)
$\mathrm{p}-\mathrm{Pb}$ collisions described as incoherent superposition of nucleon-nucleon
- vs centrality from multiplicity $|\eta|<1.4$
- only multiplicity bias
- strong deviation from $N_{\text {coll }}$-scaling at low and high centralities.

Bias from Different Estimators

- Different centrality estimators expected to show different deviations from $N_{\text {coll }}$ scaling
- CL1 (Clusters Pixel Layer 2): strong bias due to full overlap with tracking region.
- Additional bias in peripheral event from "Jet veto effect"
- Jets contribute to the multiplicity and shift events to higher centralities (p_{T} dependent)
- VOM (VOA+VOC Multiplicity): reduced bias since outside tracking region
- VOA Multiplicity: reduced bias because of important contribution from Pb fragmentation region.
- ZNA: small bias slow nucleon production independent of hard processes

At high p_{T}

$$
Q_{\mathrm{pA}}\left(p_{\mathrm{T}} ; \text { cent }\right)=\frac{\mathrm{d} N^{\mathrm{pA}} / \mathrm{d} p_{\mathrm{T}}}{N_{\text {coll }}^{\text {Glauber }} \mathrm{d} N^{\mathrm{pp}} / \mathrm{d} p_{T}}=\frac{\mathrm{d} N^{\mathrm{pA}} / \mathrm{d} p_{\mathrm{T}}}{T_{\mathrm{pA}}^{\mathrm{Glauber}} \mathrm{~d} \sigma^{\mathrm{pp}} / \mathrm{d} p_{T}} \neq 1
$$

Cronin-like enhancement at $p_{\mathrm{T}} \sim 3 \mathrm{GeV}$ increases with centrality

Mean $Q_{\text {pPb }}$ at High p_{T}

"S-shape" dependence as seen from multiplicity bias (Glauber + NBD fit), Shape flattens CL1 \rightarrow V0M \rightarrow VOA

Comparison with Glauber+Pythia

ALICE

Symbols MC

- Bias at high p_{\top} described by incoherent superposition of pp collisions.
- For most peripheral $\mathrm{p}-\mathrm{Pb}$, good agreement also in low- and intermediate p_{T} region.
- Strong deviations for all other centrality bins !

Conclusions (1)

- In pp and $\mathrm{p}-\mathrm{Pb}$ a strong increase in $<p_{\mathrm{T}}>$ with multiplicity is observed
- In models for pp understood as consequence of color reconnections between strings produced in multi parton interactions
- Similar effects in p-Pb ? collective flow (EPOS) ? Initial state effects ?
- v_{2} coefficients of "jet"-subtracted identified particles show mass ordering and crossing of v_{2} of protons and pions.
- Pattern reminiscent of $\mathrm{Pb}-\mathrm{Pb}$ collisions
- Mass ordering also obtained in hydrodynamic calculations

Conclusions (2)

- Centrality estimators based on multiplicity measurements in $|\eta|<5$ induce a bias on the hardness of the pN collisions that can be quantified by the number of hard scatterings per pN collision.
- Low (high) - multiplicity $\mathrm{p}-\mathrm{Pb} \rightarrow$ lower (higher) than average number of hard scatterings.
- Comparisons to incoherent superposition of pN collisions have to be performed including this bias.

Parallel Session p-Pb Talks

- D meson-hadron correlations in pp and p-Pb, F. Colomaria (26/7)
- J/ Ψ production in p-Pb, I. Lakomov (26/7)
- Jet production and structure in pp, p-Pb and Pb-Pb, M. Verweij (25/7)
- Low mass vector meson production in pp, p-Pb and $\mathrm{Pb}-\mathrm{Pb}$, A . de Falco (25/7)
- D-meson production in p-Pb, G. Luperello (26/7)
- Electrons from heavy flavor hadron decays, M. Heide (26/7)
- Identified hadrons in p-Pb collisions, J. Anielski (26/7)
- Two-particle correlations in p-Pb collisions, L. Milano (26/7)

Back-Up

A Large Ion Collider Experiment

2013 LHC p-Pb Run

- 4 weeks in January and February 2013 at $\sqrt{ } s_{\mathrm{NN}}=5.02 \mathrm{TeV}$
- p (8 TeV) $+\mathrm{Pb}(3.15 \mathrm{TeV})$
- Rapidity shift $\Delta y=-0.46$ in p-direction
- Maximum luminosity $4 \times 10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- 10 kHz hadronic interactions
- ALICE collected
- 10^{8} minimum bias events
- $30 \mathrm{nb}^{-1}$ integrated luminosity

Excellent performance of the LHC!

$<p_{T}>$ in pp Collisions

ALICE, arXiv:1307.1094

- At the same multiplicity, relatively mild increase between $\sqrt{ } s=2.76 \mathrm{TeV}$ and $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$
- $\left\langle p_{T}\right\rangle$ at $V_{s}=7 \mathrm{TeV}$ can be expected to be close to $V_{s}=5.02 \mathrm{TeV}$ ($\mathrm{p}-\mathrm{Pb}$)
- Valid reference for $\mathrm{p}-\mathrm{Pb}$

Blast Wave Fit

ALICE

- Mass ordering indication for common radial velocity
- Blast-Wave Fit tool to describe common features of spectra of all identified particles
- Mean radial flow velocity: $\left\langle\beta_{T}>\right.$
- Freeze-out temperature: $T_{\text {fo }}$
- Velocity profile: n

ALI-PREL-51231

Similar evolution of $T_{\text {fo }}$ vs $<\beta_{\mathrm{T}}>$ in $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ At similar multiplicity $T_{\text {fo }}$ similar in $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ but larger $<\beta_{\mathrm{T}}>$ in $\mathrm{p}-\mathrm{Pb}$

Caveat:

Pythia spectra also described by Blast-Wave Fit but no radial flow in Pythia Color Reconnections increase $<\beta_{\mathrm{T}}>$

$\Delta \varphi-\Delta \eta$ Correlations with Unidentified Particle

Correlations between trigger and associated particles in p_{T} intervals $p_{\mathrm{T}, \text { assoc }}<p_{\mathrm{T}, \text { trig }}$

> Away-side
> Jet correlation + ridge?

$$
\frac{1}{N_{\text {trig }}} \frac{\mathrm{d}^{2} N_{\text {assoc }}}{\mathrm{d} \Delta \varphi \mathrm{~d} \Delta \eta}=\frac{S(\Delta \varphi, \Delta \eta)}{B(\Delta \varphi, \Delta \eta)}
$$

Pairs from
S: same event
B : mixed event

CMS Phys. Lett. B 718 (2013)795 ALICE PLB719 (2013) 29

Near-side ridge

$$
\text { Near-side } \quad 1<p_{\text {T,assoc }}^{\text {T,trig }}<2 \mathrm{GeV} / c
$$ Jet-correlations

Subtraction Method

ALICE

Elliptic Flow in p-Pb ?

Is it flow?

Study identified particle correlations !

Glauber Extension in HIJING

- Interaction probability calculated from nucleon-nucleon (pp) overlap function.

$$
\begin{gathered}
T_{N}(b)=2 \frac{\chi_{0}(b, s)}{\sigma_{\text {soft }}} \\
\chi_{0}(\xi)=\frac{\mu_{0}^{2}}{96}\left(\mu_{0} \xi\right)^{3} K_{3}\left(\mu_{0} \xi\right), \xi=b / b_{0}(s)
\end{gathered}
$$

- Inelastic cross-section (1 - probability for no interaction)

$$
d \sigma_{\text {inelastic }}=\pi d b^{2}[1-\exp (-2 \chi(b, s))]=\pi d b^{2}\left[1-\exp \left(-\left(\sigma_{\text {soft }}+\sigma_{\text {hard }}\right) T_{N}(b, s)\right)\right]
$$

- (Poissonian) Probability for multiple hard collisions

$$
p_{i}(b)=\frac{\left(\sigma_{\text {hard }} T_{N}(b)\right)^{j}}{j!} \exp \left(-\sigma_{\text {hard }} T_{N}(b)\right)
$$

- Sum rules for Minimum Bias:

$$
\left\langle N_{\text {col }}\right\rangle=A \frac{\sigma_{p p}}{\sigma_{p A}} ;\left\langle n_{\text {hard }}\right\rangle=\frac{\sigma_{\text {hard }}}{\sigma_{\text {soft }}}\left\langle N_{\text {col }}\right\rangle
$$

Centrality Estimators

- Tracking Detectors
- Full overlap with tracking region
- TRK: Number of tracks
- CL1: Clusters in $2^{\text {nd }}$ Pixel Layer
- VZER0
- Forward multiplicity
- VOA: VZERO-A Multiplicity
- (in pPb within Pb fragmentation region)
- VOC: VZERO-C Multiplicity
- VOM: VOA+VOC
- ZDC
- Slow nucleons
- ZNA: neutrons
- ZPA: protons

Particle production modeled by Negative Binomial Distribution (NBD)

Nucleus fragmentation model: Black nucleons: evaporation Grey nucleons: knock-out

Systematic Error and MC Closure

7% variation of σ_{pN} dominates since $<N_{\text {coll }}{ }_{\mathrm{MB}}=208 \sigma_{\mathrm{pN}} / \sigma_{\mathrm{pPb}}$
MC Closure:
Small absolute differences in 0-60\% translate to large relative differences in 60-100\%.
Large variance of $N_{\text {coll }}$ within a centrality class.

Glauber Monte Carlo

- Glauber model: geometrical picture of p-A collision
- Nucleons move on straight lines
- p-N cross-section independent of the number of collisions the proton has undergone before
- Nuclear density profile Wood-Saxon
- Radius $R=6.62 \pm 0.06 \mathrm{fm}$
- Skin depth $a=0.546 \pm 0.01 \mathrm{fm}$

- Imposed intra-nucleon distance $0.4 \pm 0.4 \mathrm{fm}$
- p-N inelastic cross-section
- $\sigma_{\mathrm{NN}}=70 \pm 5 \mathrm{mb}$ at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=5.02 \mathrm{TeV}$
- Proton radius $R_{\mathrm{p}}=0.6 \pm 0.2 \mathrm{fm}$
- Uncertainties estimated by varying model parameters

Biases and Binary Scaling

- Fluctuations described by NBD have no stringent dynamic interpretation.
- Except clan model: NBD describes a number of clans with a Poissonian probability distribution and the particle distribution for each clan is a log-series

$$
\operatorname{Poisson}(k ; r \ln (1-p)) \circ \frac{-p^{n}}{n \ln (1-p)}
$$

- Models based on multi-parton interaction (MPI) include intrinsically a fluctuating number of particles sources (hard scatterings). For example HIJING (X.N. Wang and M. Gyulassy, nucl-th/9502021)

Mean number of scatterings per event obtained from impact parameter $b_{\text {NN }}$ dependent proton-nucleon overlap function $T_{N}\left(b_{N N}\right)$

$$
\left\langle n_{\text {hard }}\right\rangle=\sigma_{\text {hard }} T_{\mathrm{N}}\left(b_{\mathrm{NN}}\right)
$$

Poissonian probability for multi hard interaction

$$
p_{i}\left(b_{\mathrm{NN}}\right)=\frac{\left\langle n_{\text {hard }}\right\rangle^{j}}{j!} \exp \left(-\left\langle n_{\text {hard }}\right\rangle\right)
$$

Link between multiplicity fluctuations (bias) and number of hard scatterings !

