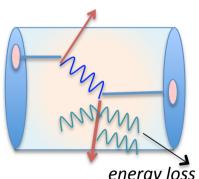
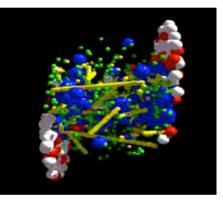


D meson nuclear modification factor and v₂ in Pb-Pb collisions

Elena Bruna (INFN Torino) for the ALICE Collaboration


Strangeness in Quark Matter – SQM July 2013 Birmingham, UK

Heavy quarks are produced in high-Q² processes in the initial stage of the collision \rightarrow pp: test perturbative QCD [see R. Bala's talk this session and F. Colamaria's talk pA session] \rightarrow p-Pb: reference for cold nuclear matter effects [see G. Luparello's talk pA session]


 \rightarrow Pb-Pb: initially-produced probes exposed to the medium evolution

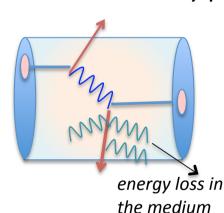
energy loss in the medium

How do partons interact with the medium?

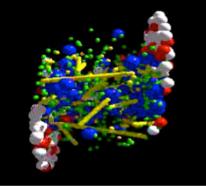
- Radiative gluon emission
- Elastic collisions with the constituents

What does the radiative energy loss depend on?

- Medium density, path-length $\rightarrow \langle \Delta E \rangle \propto \alpha_s C_R \hat{q} L^2$
- Colour-charge, Mass ("dead-cone") $\rightarrow \Delta E_g > \Delta E_{u,d} > \Delta E_c > \Delta E_b$

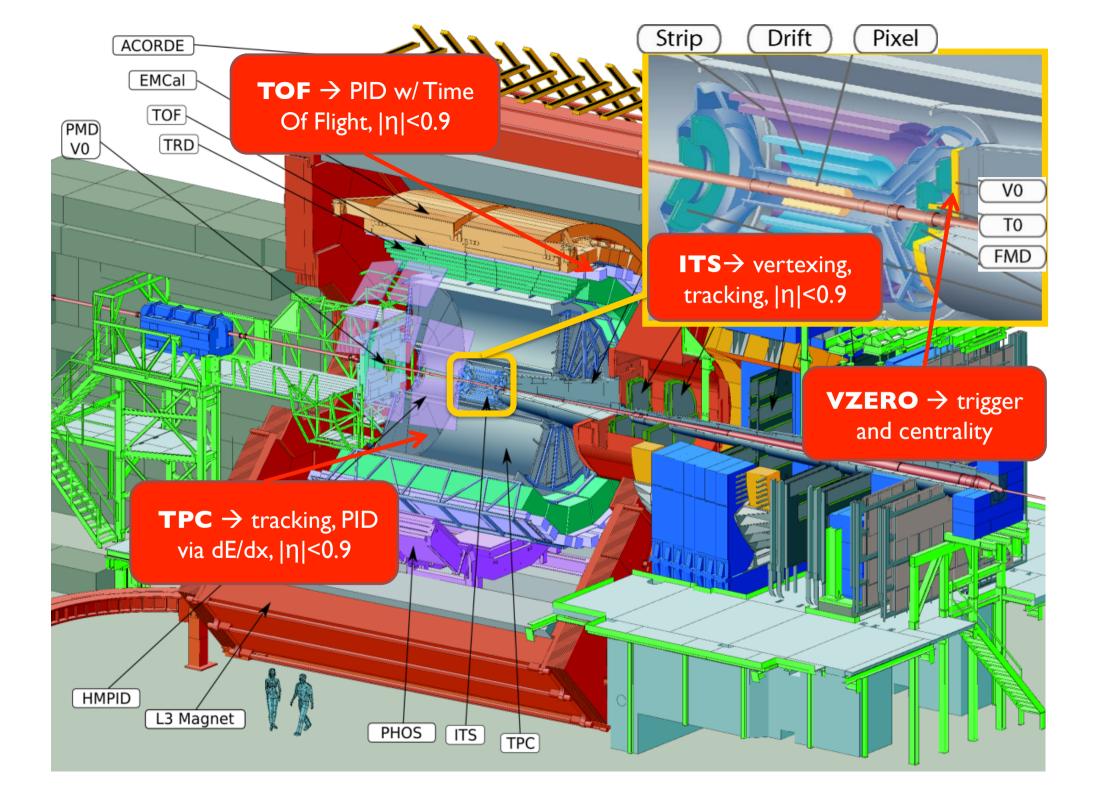

Dokshitzer and Kharzeev, PLB 519 (2001) 199.

Heavy quarks are produced in high-Q² processes in the initial stage of the collision \rightarrow pp: test perturbative QCD [see R. Bala's talk this session and F. Colamaria's talk pA session] \rightarrow p-Pb: reference for cold nuclear matter effects [see G. Luparello's talk pA session]


 \rightarrow Pb-Pb: initially-produced probes exposed to the medium evolution

How do partons interact with the medium?

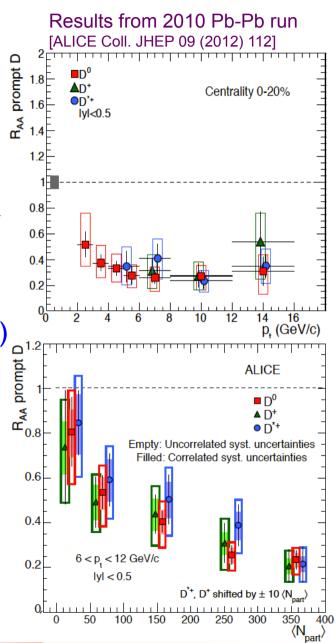
Radiative gluon emission


• Elastic collisions with the constituents

Comparing nuclear effects on heavy quarks (c and b) vs light quarks and gluons gives insight into medium properties:

- path-length/flavour/colour-charge dependence of energy loss \rightarrow information on medium density

- collective motion at low $p_T \rightarrow$ information on medium temperature

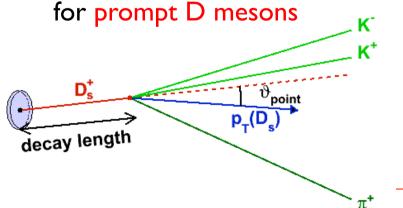


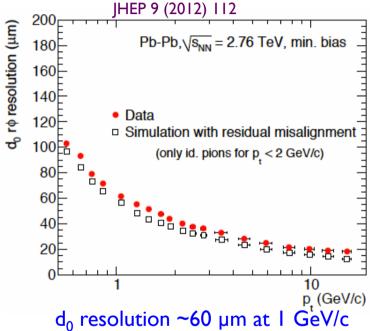
Large statistics with 2011 Pb-Pb run

- larger p_T reach in D meson R_{AA} vs p_T
- different p_T ranges for D meson R_{AA} vs centrality
- Prompt D meson R_{AA} in 0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-80% centrality classes
 - in **[2-3],[3-5]** GeV/c p_T ranges for D⁰ (NEW) **[5,8],[8,16]** GeV/c p_T ranges for D⁰,D⁺,D^{*} (NEW)
 - R_{AA} in 50-80% from 2010 run

Prompt D meson v₂ vs p_T in 30-50% (NEW, arXiv:1305.2707)

Run	System	Collected statistics
2010	Pb-Pb 2.76 TeV	2.12 μb ⁻¹ (MB) JHEP 9 (2012) 112
2011	Pb-Pb 2.76 TeV	28 μb ⁻¹ in 0-7.5% 6 μb ⁻¹ in 15-50%

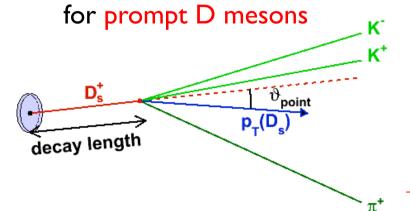


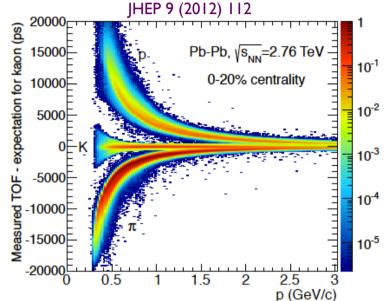


 (I) Search for secondary vertices displaced by few hundreds μm

Analysis overview

- (2) Main selection criteria:
 - p_T and impact parameter of the single tracks
 - Particle Identification PID (π , K, p) for background rejection at low p_T (TPC+TOF)
 - Pointing angle
 - Distance primary-secondary vertices
- (3) Signal extracted from fits to invariant mass distributions
- (4) Correction for beauty feed-down to extract results


$D^0 \rightarrow K^-\pi^+$	BR: 3.88%
$D^{*+} o D^0 (o K\pi)\pi^+$	BR: 2.63%
$D^+ \rightarrow K^- \pi^+ \pi^+$	BR: 9.13%
$D_s^+ \rightarrow \varphi(\rightarrow K^+K^-)\pi^+$	BR: 2.28%

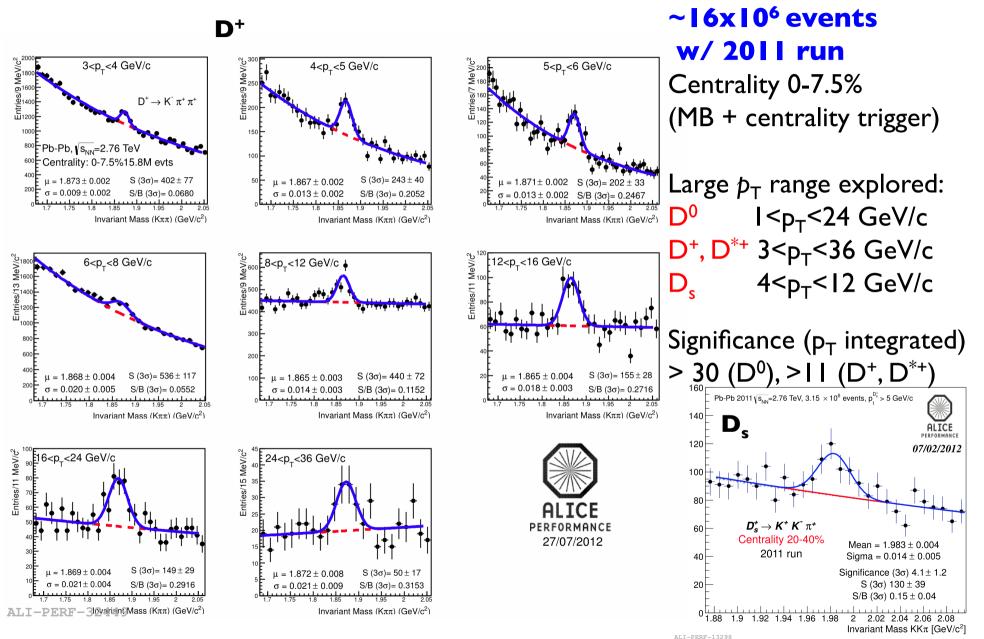


(1) Search for secondary vertices displaced by few

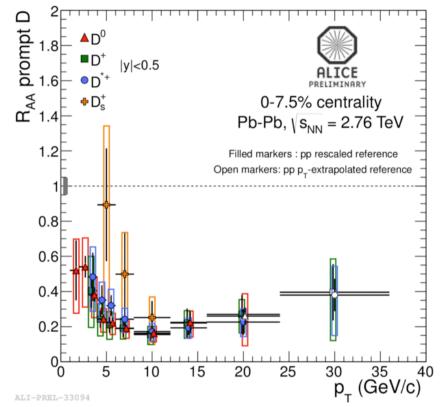
- hundreds µm
- (2) Main selection criteria:
 - p_{T} and impact parameter of the single tracks
 - Particle Identification PID (π , K, p) for background rejection at low P_T (TPC+TOF)
 - Pointing angle
 - Distance primary-secondary vertices
- (3) Signal extracted from fits to invariant mass distributions

(4) Correction for beauty feed-down to extract results

$D^0 \rightarrow K^-\pi^+$	BR: 3.88%
$D^{*+} o D^0 (o K\pi)\pi^+$	BR: 2.63%
$D^+ \rightarrow K^- \pi^+ \pi^+$	BR: 9.13%
$D_s^+ \rightarrow \varphi(\rightarrow K^+K^-)\pi^+$	BR: 2.28%



Analysis overview


D mesons in 0-7.5% centrality

Kuznetsova & Rafelski, EPJ C51(2007)113; He et al., arXiv:1204.4442; Andronic et al., arXiv:0708.1488

$$R^{D}_{AA}(p_{T}) = \frac{dN^{D}_{AA}/dp_{T}}{\left\langle T_{AA} \right\rangle \times d\sigma^{D}_{pp}/dp_{T}}$$

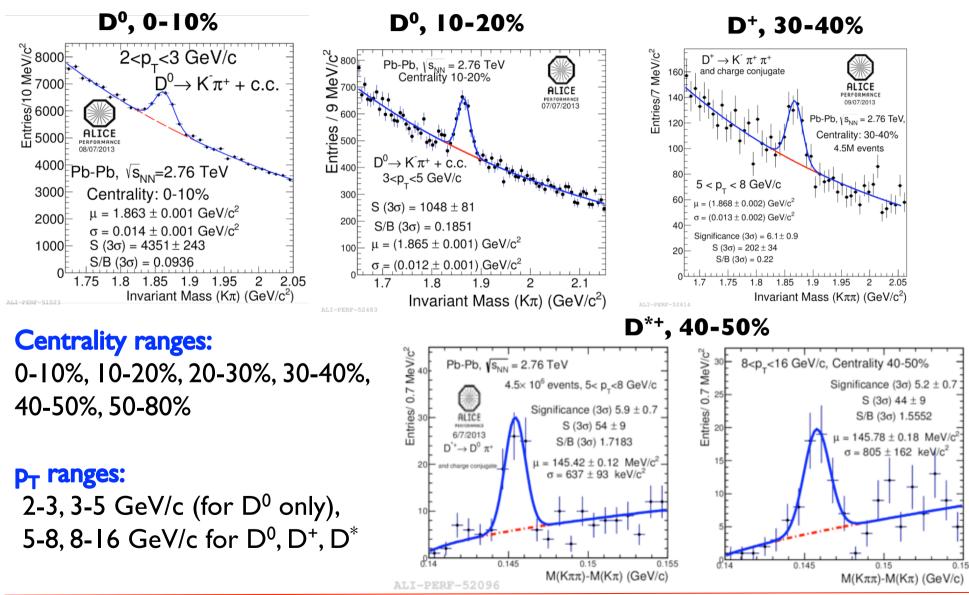
pp reference determined by scaling the cross section measured by ALICE at 7 TeV to 2.76 TeV using FONLL predictions - arXiv:1107.3243, JHEP07(2012)191, arXiv:1205.4007

Beauty feed-down subtracted using FONLL prediction with an assumption on the R_{AA} of D mesons from beauty feed-down

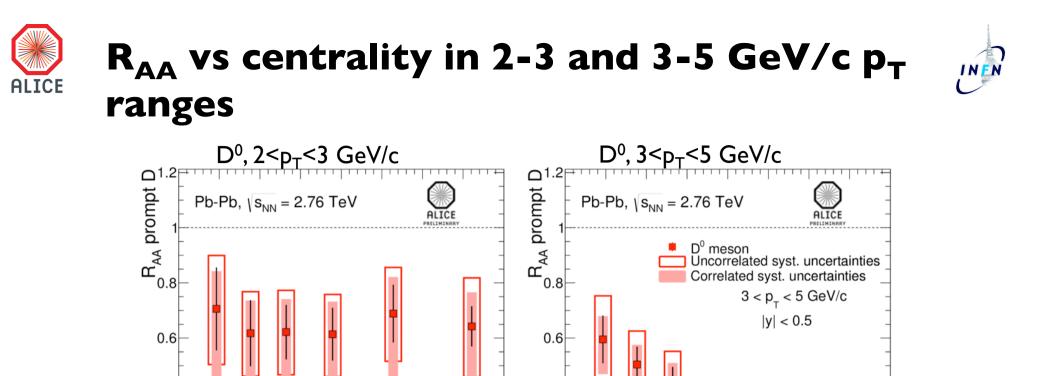
 D^0 , D^+ , D^{*+} R_{AA} compatible within errors

Larger p_T window explored w/ 2011 Run

Large suppression in a wide p_T range: \rightarrow factor of 4-5 in 5< p_T <15 GeV/c


First measurement of D_s in Pb-Pb collisions with 2011 Run

\rightarrow suppression of 3-5 in 8-12 GeV/c


 \rightarrow more statistics needed to conclude on the expected enhancement of low-p_T D_s

New Results: D mesons vs centrality

Elena Bruna (INFN)

0.4

0.2

50

100

150

200

250

 $\langle N_{part}$ weighted with N_{c}

300

350

400

Systematic uncertainties:

ALT-PREL-52574

0.4

0.2

D⁰ meson

100

150

50

Uncorrelated syst. uncertainties Correlated syst. uncertainties

> $2 < p_{_{
> m T}} < 3 {
> m ~GeV/c}$ |v| < 0.5..... 200 250 300

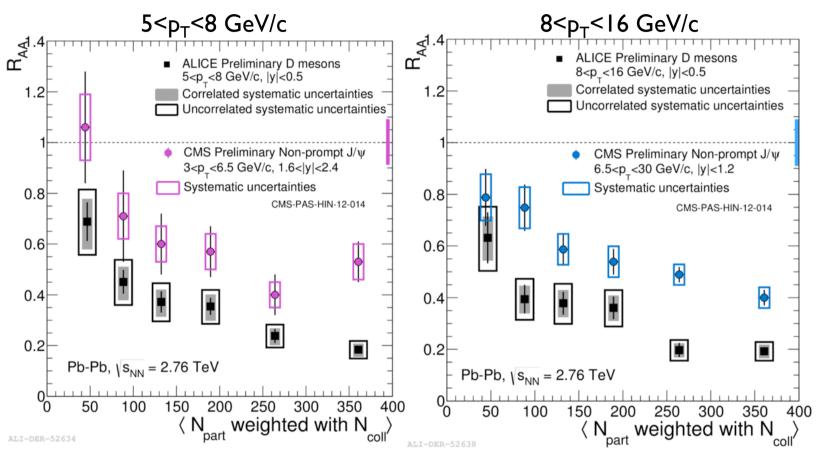
 $\langle N_{part}$ weighted with N

-correlated in centrality classes: normalization, pp reference cross section -uncorrelated: dominated by data systematics (i.e. cut variation efficiencies) and B feed-down $(R_{AA}^{feed-down}/R_{AA}^{Prompt} might depend on N_{part})$.

400

350

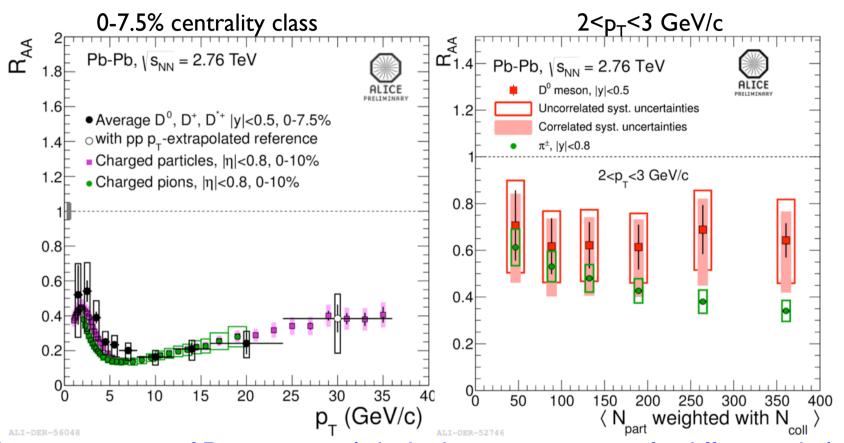
Different suppression trend of D⁰ mesons vs N_{part} in 2-3 and 3-5 GeV/c p_T ranges


R_{AA} vs centrality in 5-8 and 8-16 GeV/c **p_T** ranges D⁰, D⁺, D^{*} 8<p_T<16 GeV/c D⁰, D⁺, D^{*} 5<p_T<8 GeV/c ∩^{1.2} R_{AA} prompt l R_{AA} prompt [Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ $5 < p_{\perp} < 8 \text{ GeV/c}$ 8 < p_ < 16 GeV/c |y| < 0.5|y| < 0.5Empty: Uncorrelated syst. uncertainties Empty: Uncorrelated syst. uncertainties Filled: Correlated syst. uncertainties Filled: Correlated syst. uncertainties 0.6 0.6 0.4

0.4 0.2 0.2 D^{*+} , D^{+} shifted by $\pm 10 \langle N_{part} \rangle$ D^{*+} , D^{+} shifted by $\pm 10 \langle N_{nat} \rangle$ 50 100 150 200 250 300 350 400 100 200 250 300 150 350 400 $\langle N_{part}$ weighted with N $\langle N_{part}$ weighted with N_{coll} ALI-DER-53472 ALT-DER-53470

Suppression of D⁰, D⁺, D^{*} mesons increases with centrality in 5-8 and 8-16 GeV/c p_T ranges

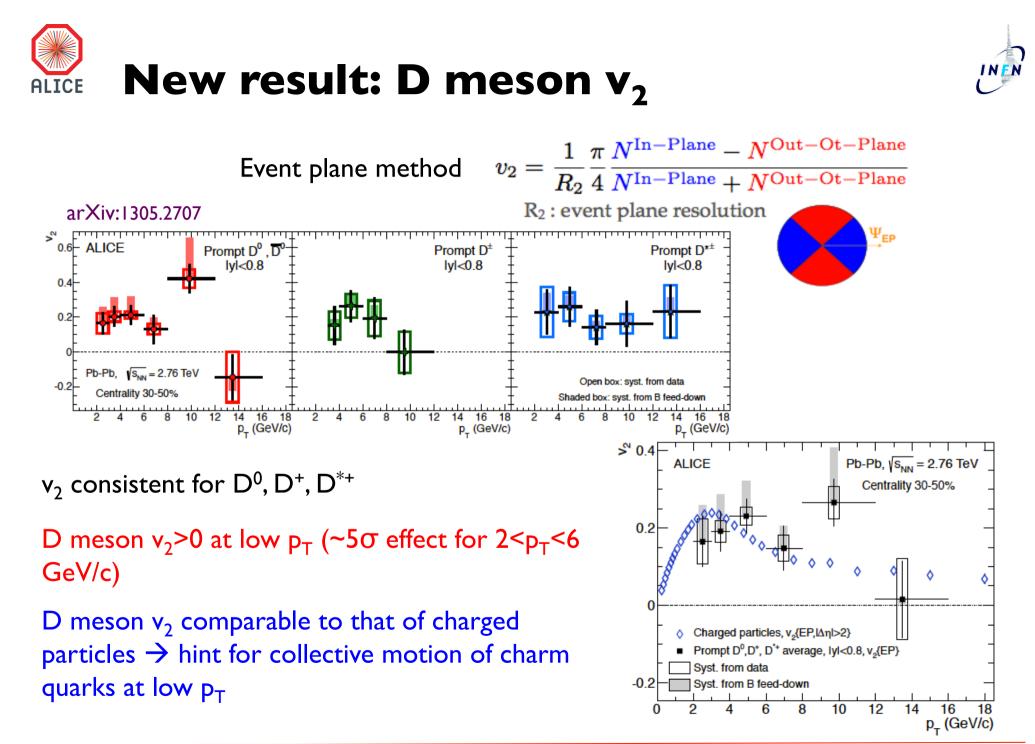
INFN



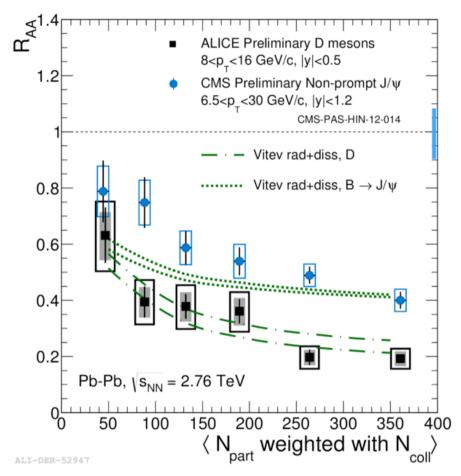
 p_T ranges chosen to have similar kinematics for D and B mesons measured via non-prompt J/ ψ (based on simulations of decay kinematics, i.e. $p_T > D \sim 10.5$ GeV/c in 8-16 GeV/c, $p_T > B \sim 11.5$ GeV/c in J/ ψp_T range 6.5-30 GeV/c)

CAVEAT: different y ranges for D and non-prompt J/ ψ

Indication of a difference between charm and beauty suppression in central collisions

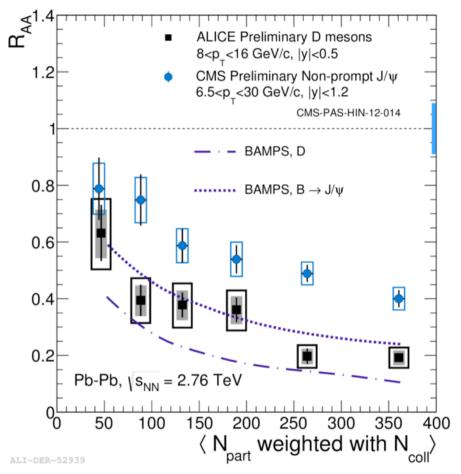


Similar suppression of D mesons as light hadrons, suggestion of a difference below 5 GeV/c in central collisions


 \rightarrow more statistics needed to draw conclusion on the expected difference between D and π suppression

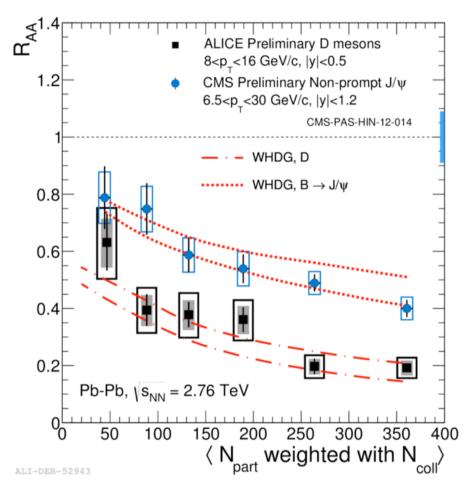
 $[R_{AA}(D)>R_{AA}(\pi)]$ expected from mass hierarchy and colour charge dependence of energy loss]

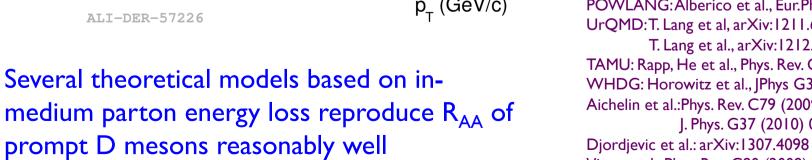
Comparison to models (1/3)



Vitev et al.: agreement with D meson R_{AA} vs N_{part} ; underestimate the non-prompt Vitev et al.: Phys. Rev. C80 (2009) 054902, Phys. Lett. B 713 (2012) 224

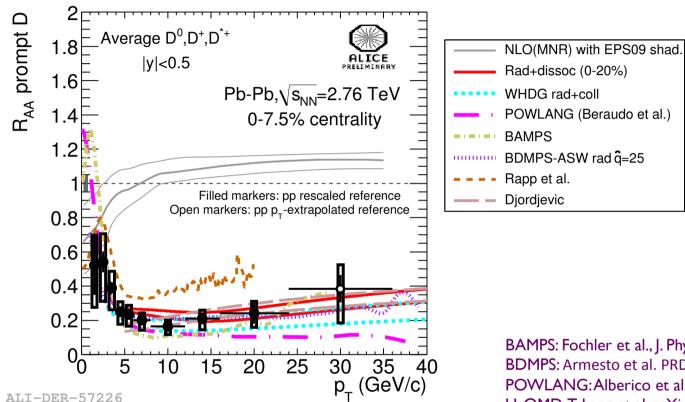
Comparison to models (1/3)




BAMPS: seems to underestimate both D meson and non-prompt J/ ψ R_{AA} vs N_{part} BAMPS: Fochler et al., J. Phys. G38 (2011) 124152

Comparison to models (1/3)

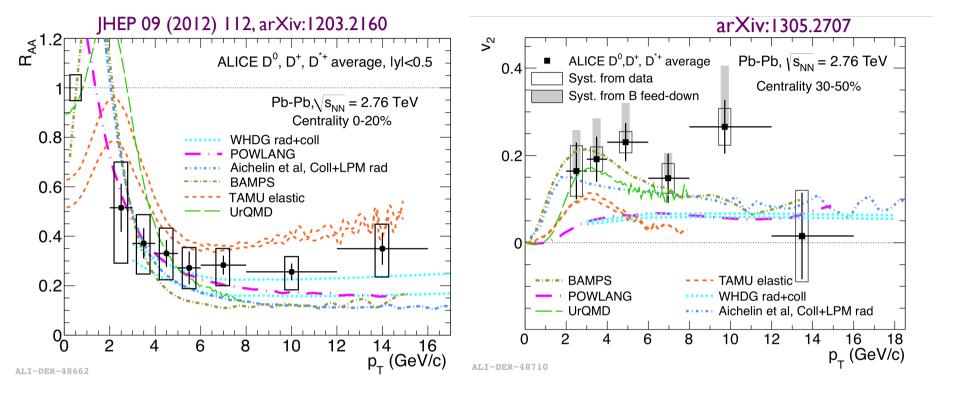
WHDG: agreement with D meson R_{AA} and with non-prompt J/ ψ R_{AA} vs N_{part} WHDG: Horowitz et al., JPhys G38 (2011) 124114



Comparison to models (2/3) ALICE

BDMPS: Armesto et al. PRD71 (2005) 054027 UrQMD:T. Lang et al, arXiv:1211.6912 [hep-ph]; T. Lang et al., arXiv:1212.0696 [hep-ph]. TAMU: Rapp, He et al., Phys. Rev. C 86 (2012) 014903 WHDG: Horowitz et al., |Phys G38 (2011) 124114 Aichelin et al.: Phys. Rev. C79 (2009) 044906 J. Phys. G37 (2010) 094019

Vitev et al.: Phys. Rev. C80 (2009) 054902, Phys. Lett. B 713 (2012) 224



Theoretical models reproduce reasonably well R_{AA} but are challenged by simultaneously reproducing results from heavy-flavour R_{AA} and v_2

BAMPS: Fochler et al., J. Phys. G38 (2011) 124152
POWLANG: Alberico et al., Eur. Phys. J C71 (2011) 1666
UrQMD: T. Lang et al., arXiv:1211.6912 [hep-ph]; T. Lang et al., arXiv:1212.0696 [hep-ph].
TAMU: Rapp, He et al., Phys. Rev. C 86 (2012) 014903
WHDG: Horowitz et al., JPhys G38 (2011) 124114
Aichelin et al.: Phys. Rev. C79 (2009) 044906
J. Phys. G37 (2010) 094019

Comparison to models (3/3)

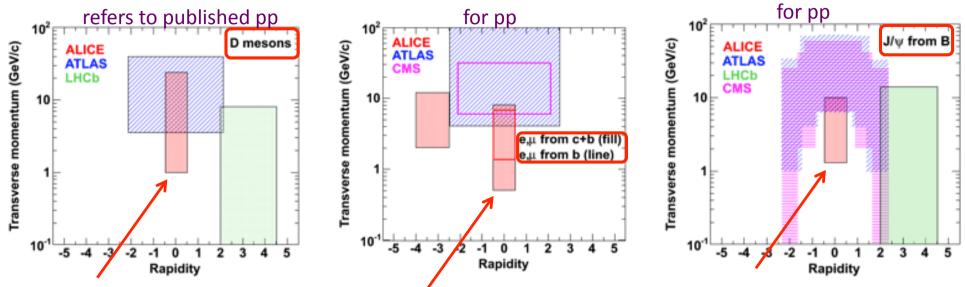
D meson R_{AA} vs p_T in central (0-7.5%) Pb-Pb:

- strong suppression by a factor of 4-5 in $5 < p_T < 15$ GeV/c
- D_s : suppression by a factor of 3-5 in 8-12 GeV/c

D meson R_{AA} vs N_{part}:

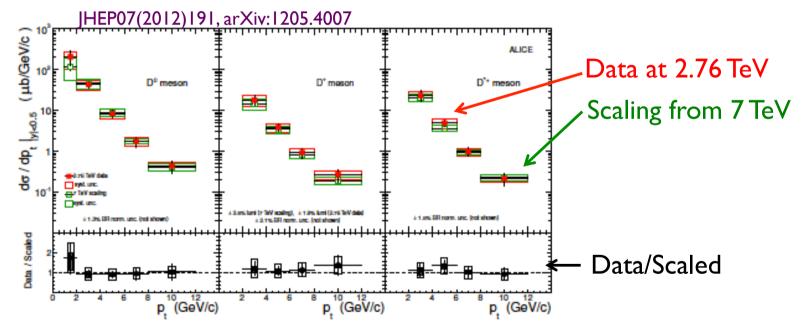
- suppression increases with increasing centrality for 3-5, 5-8, 8-16 GeV/c
- suppression tends to be constant with centrality in the lowest p_{T} range, 2-3 GeV/c
- observed difference in suppression of D mesons (ALICE) and non-prompt J/ ψ from B meson decays (CMS) at high p_T in central collisions

Non-zero v₂ for D mesons (2-6 GeV/c) in semi-peripheral Pb-Pb collisions.


Models predict reasonably well D meson R_{AA} . Challenge for theory to simultaneously reproduce R_{AA} and v_2 . With future data, smaller statistical and systematic uncertainties will help to further constrain theory. [see C.Terrevoli's talk Future session]

Backup

ALICE uniqueness: low p_T (thanks to tracking+PID) especially at y=0 Why crucial to go to low p_T ?


- -better constraint on the measured cross-section
- -mass dependence of energy loss (the mass effect vanishes when mass of the quark is neglible wrt its energy)
- -test models of thermal production of charm at LHC (if so, it occurs at low p_T)
- -test the expected enhancement of charmed-strange hadrons at low p_T (consequence of the strangeness enhancement)

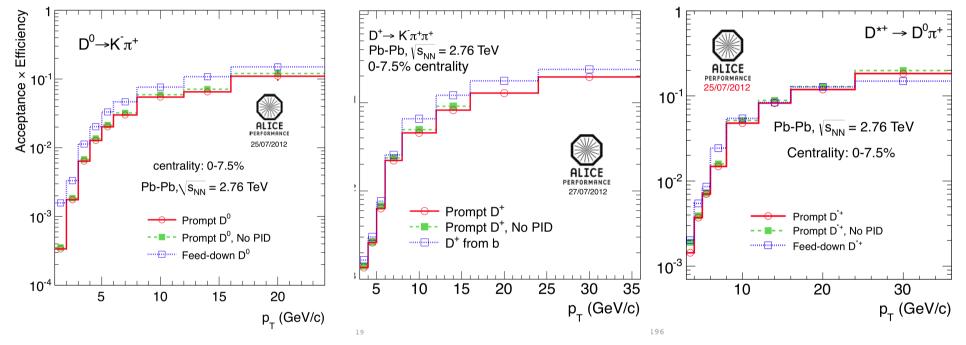
Determined by scaling the cross section measured by ALICE at 7 TeV to 2.76 TeV. arXiv:1107.3243

- FONLL predictions at 7 and 2.76 TeV used to determine the ratio of cross sections
- Scaling validated with short pp run at 2.76 TeV.
 - scaling uncertainty from +25% -10% at low p_T (2-4 GeV/c) to ~5% at high p_T

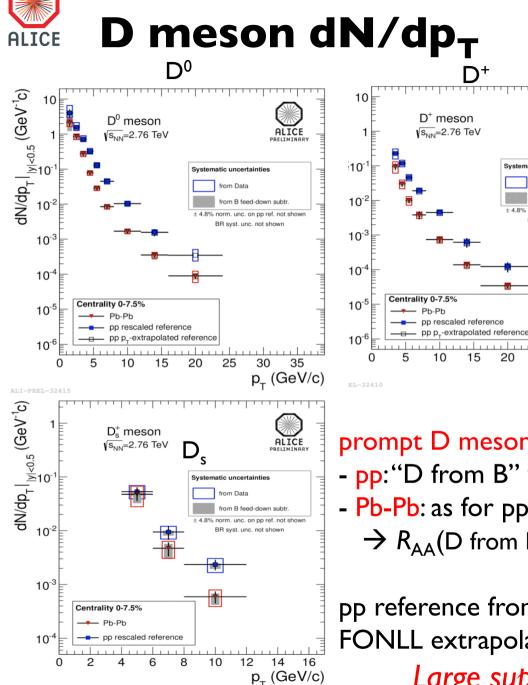
• At high- p_T (~16 GeV/c for D⁰, >24 GeV/c for D⁺, D^{*}) no pp measurement is available. Reference extrapolated with data/theory relying on the FONLL p_T shape

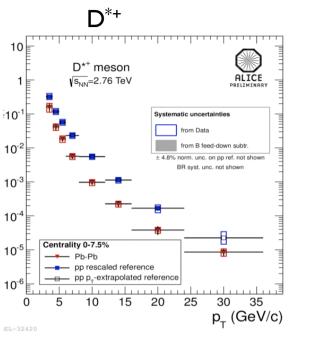
$$f_{\text{prompt}} = 1 - \left[N^{\text{D feed}-\text{down raw}} / N^{\text{D raw}} \right] = 1 - \left\langle T_{\text{AA}} \right\rangle \cdot \left(\frac{\mathrm{d}^2 \sigma}{\mathrm{d}y \mathrm{d}p_{\text{t}}} \right)_{\text{feed}-\text{down}}^{\text{FONLL}} \cdot \frac{R_{\text{AA}}^{\text{feed}-\text{down}} \cdot \underline{(Acc \times \varepsilon)_{\text{feed}-\text{down}} \cdot \Delta y \Delta p_{\text{t}} \cdot \text{BR} \cdot N_{\text{evt}}}{N^{\text{D raw}}/2}$$

Secondary D from B decays estimated from FONLL predictions


Assumptions on B suppression: - analysis on R_{AA} vs p_T in 0-7.5% $R_{AA}^{\text{feed-down}} = R_{AA}^{\text{Prompt D}}$ and $R_{AA}^{\text{feed-down}}$ ranging from 0.3 to 3x $R_{AA}^{\text{Prompt D}}$

- new analysis on R_{AA} vs centrality: $R_{AA}^{feed-down} = 2 \times R_{AA}^{Prompt D}$ and $R_{AA}^{feed-down}$ ranging from I to $3 \times R_{AA}^{Prompt D}$


Note: new choice of $R_{AA}^{feed-down}$ driven from comparison to R_{AA} from non-prompt J/ ψ (CMS) in central collisions. Effect of the two $R_{AA}^{feed-down}$ hypothesis (~2-8%) within statistical errors Systematic uncertainties from B energy loss ~6-10%



ALI-PERF-32809

prompt D mesons = (inclusive D) – (D from B decays) - pp:"D from B" yield estimated from pQCD - Pb-Pb: as for pp, but uncertainty on unknown B R_{AA} : $\rightarrow R_{AA}(D \text{ from B})$ between 1/3 and 3 x $R_{AA}(D)$

ALICE

Systematic uncertainties

25

20

30

35

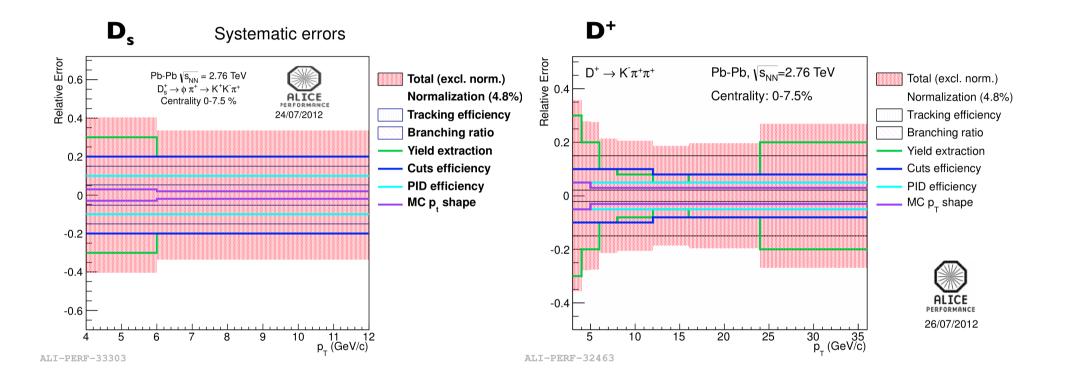
p_ (GeV/c)

from Data

from B feed-down subt

4.8% norm, unc. on pp ref. not shown

BR syst. unc. not shown


pp reference from 7 TeV scaled to 2.76 TeV (+ high- p_{T} FONLL extrapolation) and multiplied by $\langle T_{AA} \rangle$

Large suppression in Pb-Pb relative to pp

Elena Bruna (INFN)

