Probing the QCD Phase diagram with the Measurement of ϕ-meson Production and Elliptic Flow in Heavy-Ion Collisions at STAR

Md. Nasim
for the STAR Collaboration

National Institute of Science Education and Research (NISER)
Bhubaneswar, India

July 22-27, 2013
Outline

• Motivation
 – Beam Energy Scan at RHIC
 – ϕ-meson as a clean probe for onset of deconfinement

• The STAR experiment

• Results
 – p_T-spectra, $R_{cp}, N(\Omega)/N(\phi)$
 – Elliptic flow: $v_2(\phi)/v_2(p)$, NCQ scaling

• Summary
Motivation

The RHIC Beam Energy Scan (BES)

- BES Motivations
 - Search for phase boundary
 - Search for Critical point

- Observables of de-confinement
 a) Strange hadron dynamics
 \(N(\Omega)/N(\phi) \) and \(R_{CP}(\phi) \)
 b) Strange hadron collectivity
 Elliptic flow \((v_2) \) of \(\phi \)
φ-meson : A clean probe

Partonic ϕ-meson v_2 large

Hadronic ϕ-meson v_2 small

- mass: proton $\sim \phi(s\bar{s}) \sim \Lambda$
- ϕ: meson, proton & Λ: baryon
- $s+\bar{s} \rightarrow \phi$ not $K^+ + K^- \rightarrow \phi$
- small hadronic cross section $
\sigma_{\phi-hadron} < \sigma_{p-\pi, \pi-\pi}$

In the hadronic case, no number-of-quark scaling and the value of ϕ meson v_2 is expected to be small

AMPT model

- π, K, p Freeze out
- Crossover
- Phase Boundary
- expected ϕ-meson f_0
- chemical freeze-out

The STAR Experiment at RHIC

- Collisions: Au+Au
- Collisions centrality from uncorrected $\frac{dN_{ch}}{d\eta}$ in $|\eta| < 0.5$

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Good MB events in Million</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>~ 4 M</td>
</tr>
<tr>
<td>11.5</td>
<td>~ 12 M</td>
</tr>
<tr>
<td>19.6</td>
<td>~ 36 M</td>
</tr>
<tr>
<td>27</td>
<td>~ 70 M</td>
</tr>
<tr>
<td>39</td>
<td>~ 130 M</td>
</tr>
<tr>
<td>62.4</td>
<td>~ 67 M</td>
</tr>
<tr>
<td>200</td>
<td>~ 240 M</td>
</tr>
</tbody>
</table>
Particle identification and v_2 measurement method

- **Time projection chamber (TPC)**
 - full azimuth, $|\eta| < 1$
 - dE/dx v.s. momentum

- **Barrel Time-Of-Flight (TOF)**
 - full azimuth, $|\eta| < 0.9$
 - Particle flight time
 - Clean separation of K, π up to $p_T = 1.6$ GeV/c

- $v_2 = \langle \cos 2(\varphi - \psi_2)/Res \rangle$

- **TPC η-sub event plane for v_2 analysis**
 - Non-flow effect reduced

- **TPC particle identification (PID)** is used for spectra analysis, TPC+TOF PID is used for v_2 analysis

• ϕ meson transverse momentum distribution can be well described by a Levy function

\[
\frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy} = \frac{dN/dy}{2\pi nT(nT + m(n - 2))} \frac{(n - 1)(n - 2)}{(nT + m(n - 2))} \left(1 + \frac{\sqrt{p_T^2 + m^2} - m}{nT}\right)^{-n}
\]
Nuclear Modification Factor (R_{cp})

$K_S^0 \ R_{CP} : 0-05%/40-60%$

$\phi \ R_{CP} : 0-10%/40-60% \ and \ 0-05%/40-60% \ for \ 200 \ GeV$

- \phi\text{-meson} \ R_{CP} \geq 1 \ at \ intermediate \ p_T \ for \ \sqrt{s_{NN}} \leq 39 \ GeV.
Strange Quark Dynamics

- Intermediate p_T Ω/ϕ ratios: Indication of separation between ≥ 19.6 and 11.5 GeV. The χ^2/ndf for deviation between 11.5 and 19.6 GeV is $\sim 8.3/2$ for $p_T > 2.4$ GeV/c.

- Derived strange quark p_T distributions show a trend of separation between ≥ 19.6 and 11.5 GeV.

\textit{Change of particle production mechanism?}

\[v_2(\phi) \text{ vs. } v_2(p) \]

- Mass: proton \(\sim \phi \)
- At low \(p_T \), \(v_2(\phi)/v_2(p) \) decreases with decreasing beam energies
 - Indicating less partonic collectivity with decreasing beam energy.

$v_2(\phi)$ vs. $v_2(p)$

- Mass: proton $\sim \phi$
- At low p_T, $v_2(\phi)/v_2(p)$ decreases with decreasing beam energies
 → Indicating less partonic collectivity with decreasing beam energy.

- Au+Au, $\sqrt{s_{NN}} = 200$ GeV
- At low p_T, $v_2(\phi)/v_2(p) > 1.0$
 → proton v_2 possibly affected by hadronic re-scattering.

NCQ scaling: ϕ-meson v_2

- ϕ meson v_2 deviates from other particles $\sim 2\sigma$ at the highest p_T data in 7.7 and 11.5 GeV collisions.

 → Small or zero v_2 for ϕ meson implies hadronic interactions are more important at lower energies.

More data for 7.7 and 11.5 GeV are needed for clear conclusion.

Summary

- STAR preliminary ϕ meson spectra and elliptic flow in Au+Au collisions at $\sqrt{s_{NN}} = 7.7 - 200$ GeV have been presented.

- ϕ-meson $R_{CP} \geq 1$ at intermediate p_T for $\sqrt{s_{NN}} \leq 39$ GeV.

- Intermediate p_T Ω/ϕ ratios and derived strange quark p_T distribution show a indication of separation between ≥ 19.6 GeV and 11.5 GeV.
 → May suggests change of production mechanism.

- At low p_T, $v_2(\phi)/v_2(p)$ decreases with decreasing beam energies.
 → Indicating less partonic collectivity with decreasing beam energy.
 Top RHIC Energy ($\sqrt{s_{NN}} = 200$ GeV): At low p_T, $v_2(\phi)/v_2(p) > 1.0$.
 → Could be the effect of hadronic re-scattering.

- ϕ-meson v_2 deviates from other particles $\sim 2\sigma$ at the highest p_T data in 7.7 and 11.5 GeV collisions.
 → It may indicate hadronic interactions are more important at lower energies.
Back-up