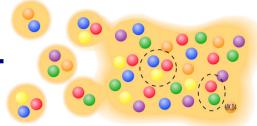






### **Strongly interacting parton-hadron matter in- and out-off equilibrium**

#### Elena Bratkovskaya


#### Institut für Theoretische Physik & FIAS, Uni. Frankfurt



14th Conference ,Strangeness in Quark Matter', Birmingham, UK, 22-27th July 2013



### **From hadrons to partons**



In order to study the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent non-equilibrium (transport) model with >explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!

explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase

**Transport theory:** off-shell Kadanoff-Baym equations for the Green-functions  $S_h^{<}(x,p)$  in phase-space representation for the partonic and hadronic phase



**Parton-Hadron-String-Dynamics (PHSD)** 

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

**Dynamical QuasiParticle Model (DQPM)** 

**QGP phase described by** 

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

### **Dynamical QuasiParticle Model (DQPM) - Basic ideas:**

**DQPM** describes **QCD** properties in terms of **,resummed' single-particle Green's functions – in the sense of a two-particle irreducible (2PI) approach:** 

**Gluon propagator:**  $\Delta^{-1} = \mathbf{P}^2 - \mathbf{\Pi}$  gluon self

gluon self-energy:  $\Pi = M_g^2 - i2\Gamma_g \omega$ 

Quark propagator:  $S_q^{-1} = P^2 - \Sigma_q$  quark self-energy:  $\Sigma_q = M_q^2 - i2\Gamma_q \omega$ 

the resummed properties are specified by complex self-energies which depend on temperature:

- -- the real part of self-energies ( $\Sigma_q$ ,  $\Pi$ ) describes a dynamically generated mass ( $M_q$ ,  $M_g$ );
- -- the imaginary part describes the interaction width of partons  $(\Gamma_q, \Gamma_g)$

**space-like part of energy-momentum tensor**  $T_{\mu\nu}$  defines the potential energy density and the mean-field potential (1PI) for quarks and gluons

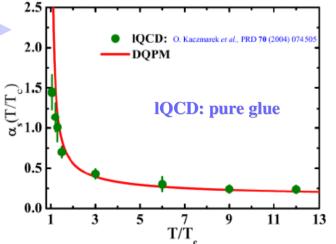
**2PI framework** guaranties a consistent description of the system in- and out-of equilibrium on the basis of Kadanoff-Baym equations

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

### The Dynamical QuasiParticle Model (DQPM)

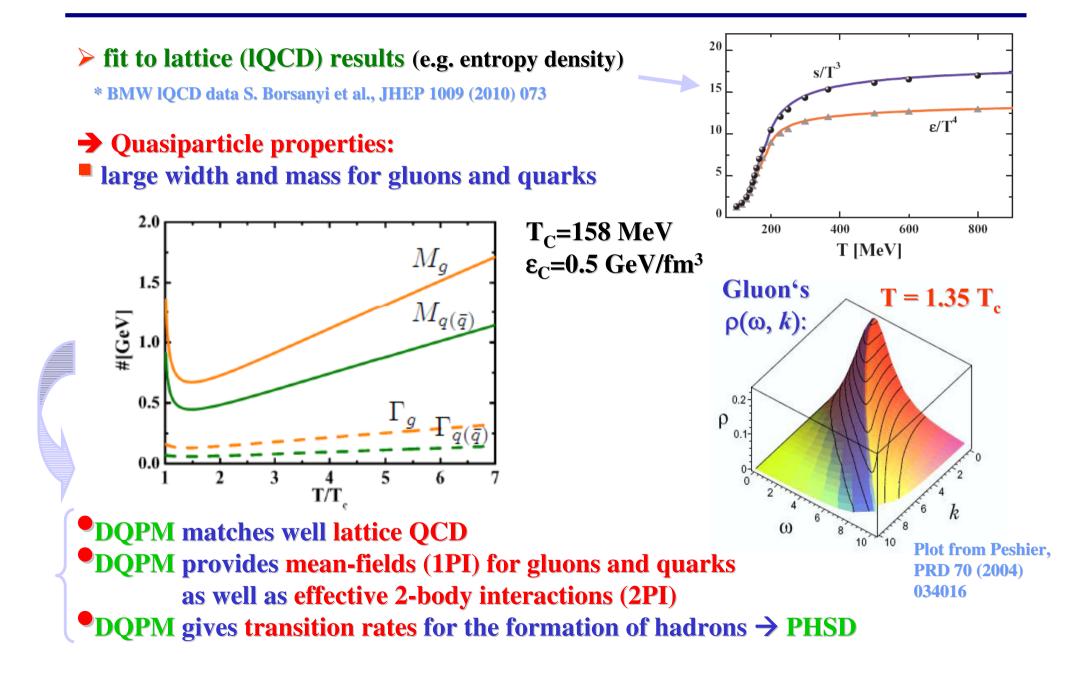
**<u>Properties</u>** of interacting quasi-particles: massive quarks and gluons (g, q,  $q_{bar}$ ) with Lorentzian spectral functions :

$$(i=q,\overline{q},g) \qquad \rho_i(\omega,T) = \frac{4\omega I_i(T)}{\left(\omega^2 - \overline{p}^2 - M_i^2(T)\right)^2 + 4\omega^2 \Gamma_i^2(T)}$$

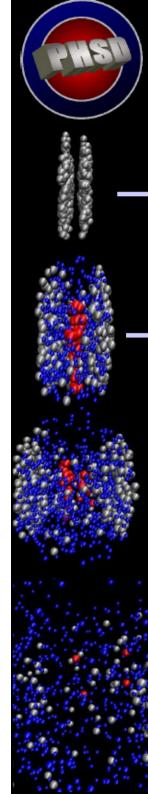

• Modeling of the quark/gluon masses and widths  $\rightarrow$  HTL limit at high T

**quarks: mass:** 
$$M_{q(\bar{q})}^2(T) = \frac{N_c^2 - 1}{8N_c} g^2 \left(T^2 + \frac{\mu_q^2}{\pi^2}\right)$$
**width:**  $\Gamma_{q(\bar{q})}(T) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2 T}{8\pi} \ln\left(\frac{2c}{g^2} + 1\right)$ 
**running coupling (pure glue): gluons:**
 $M_g^2(T) = \frac{g^2}{6} \left( \left(N_c + \frac{N_f}{2}\right) T^2 + \frac{N_c}{2} \sum_q \frac{\mu_q^2}{\pi^2} \right)$ 
**running coupling (pure glue):**

$$\alpha_s(T) = \frac{g^2(T)}{4\pi} = \frac{12\pi}{(11N_c - 2N_f)\ln[\lambda^2(T/T_c - T_s/T_c)^2]}$$


☐ fit to lattice (lQCD) results (e.g. entropy density)

with 3 parameters:  $T_s/T_c=0.46$ ; c=28.8;  $\lambda=2.42$ (for pure glue N<sub>f</sub>=0)




DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

### The Dynamical QuasiParticle Model (DQPM)



Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)



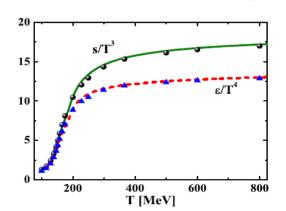
### I. PHSD - basic concept

#### I. From hadrons to QGP:



- string formation in primary NN collisions
- string decay to pre-hadrons (B baryons, m mesons)




**Formation of QGP stage by dissolution of pre-hadrons** (all new produced secondary hadrons) into massive colored quarks + mean-field energy

**QGP phase:**  
$$\varepsilon > \varepsilon_{critical}$$

$$B \to q \bar{q} q, \ m \to q \bar{q} \quad \forall U_q$$

based on the Dynamical Quasi-Particle Model (DQPM) which defines quark spectral functions, i.e. masses  $M_q(\varepsilon)$  and widths  $\Gamma_q(\varepsilon)$ 

+ mean-field potential  $U_q$  at given  $\varepsilon$  – local energy density



( $\boldsymbol{\varepsilon}$  related by IQCD EoS to T - temperature in the local cell)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; EPJ ST 168 (2009) 3; NPA856 (2011) 162.

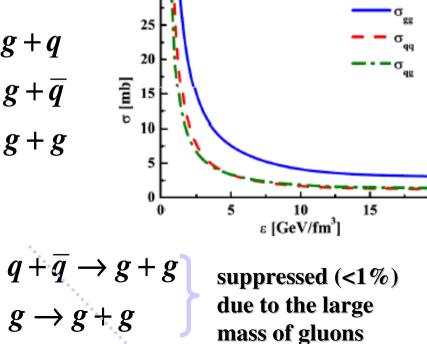


### **II. PHSD - basic concept**

#### II. Partonic phase - QGP:

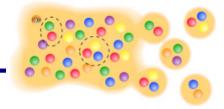
**quarks and gluons (= ,dynamical quasiparticles')** with off-shell spectral functions (width, mass) defined by the DQPM

□ in self-generated mean-field potential for quarks and gluons U<sub>q</sub>, U<sub>g</sub> from the DQPM


□ EoS of partonic phase: ,crossover' from lattice QCD (fitted by DQPM)

□ (quasi-) elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

- (quasi-) elastic collisions:
  - $q + q \to q + q \qquad g + q \to g + q$   $q + \overline{q} \to q + \overline{q} \qquad g + \overline{q} \to g + \overline{q}$   $\overline{q} + \overline{q} \to \overline{q} + \overline{q} \qquad g + g \to g + g$


#### inelastic collisions: (Breight-Wigner cross sections)

$$\begin{cases} q + \overline{q} \to g \\ g \to q + \overline{q} \end{cases}$$



20



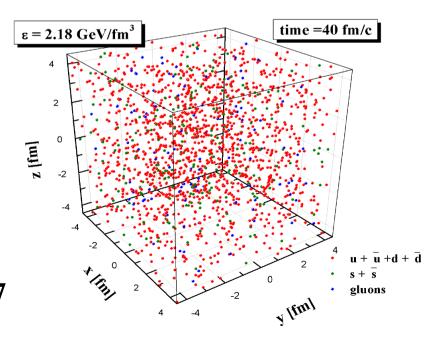


#### III. <u>Hadronization:</u>

#### **Hadronization:** based on DQPM

- massive, off-shell (anti-)quarks with broad spectral functions hadronize to off-shell mesons and baryons or color neutral excited states - ,strings' (strings act as ,doorway states' for hadrons)

$$g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ ('string')$$
  
 $q + q + q \leftrightarrow baryon \ ('string')$ 


Local covariant off-shell transition rate for q+qbar fusion
 meson formation:

$$\frac{dN^{q+\bar{q}\to m}}{d^4x \ d^4p} = Tr_q Tr_{\bar{q}} \delta^4(p-p_q-p_{\bar{q}}) \delta^4\left(\frac{x_q+x_{\bar{q}}}{2}-x\right) \delta(flavor,color)$$
  
$$\cdot N_q(x_q,p_q) N_{\bar{q}}(x_{\bar{q}},p_{\bar{q}}) \cdot \omega_q \rho_q(p_q) \cdot \omega_{\bar{q}} \rho_{\bar{q}}(p_{\bar{q}}) \cdot |M_{q\bar{q}}|^2 W_m(x_q-x_{\bar{q}},p_q-p_{\bar{q}})$$

*N<sub>j</sub>(x,p)* is the phase-space density of parton j at space-time position x and 4-momentum p
 *W<sub>m</sub>* is the phase-space distribution of the formed ,pre-hadrons' (Gaussian in phase space)
 |M<sub>qq</sub>|<sup>2</sup> is the effective quark-antiquark interaction from the DQPM

#### **IV. <u>Hadronic phase:</u>** hadron-string interactions – off-shell HSD

# Properties of the QGP in-equilibrium using PHSD



Also talk by Rudy Marty: ,Phase Transition' - Room 127 23 July, 17:20

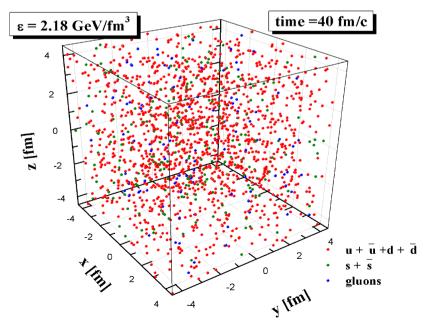


### **Properties of parton-hadron matter in equilibrium**

V. Ozvenchuk et al., PRC 87 (2013) 024901, arXiv:1203.4734 V. Ozvenchuk et al., PRC 87 (2013) 064903, arXiv:1212.5393

#### The goal:

**study of the dynamical equilibration** of QGP within the non-equilibrium off-shell PHSD transport approach


**transport coefficients** (shear and bulk viscosities) of strongly interacting partonic matter

**particle number fluctuations (scaled variance, skewness, kurtosis)** 

#### **<u>Realization:</u>**

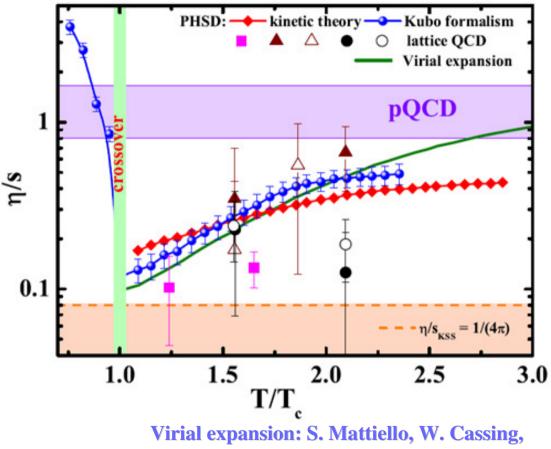
**□** Initialize the system in a finite box with periodic boundary conditions with some energy density  $\varepsilon$  and chemical potential  $\mu_q$ 

**Evolve the system in time until equilibrium is achieved** 



**Properties of parton-hadron matter – shear viscosity** 

 $\eta$ /s using Kubo formalism and the relaxation time approximation (,kinetic theory')


**T**=T<sub>C</sub>:  $\eta$ /s shows a minimum (~0.1) close to the critical temperature

**T>T<sub>C</sub> : QGP - pQCD limit** at higher temperatures

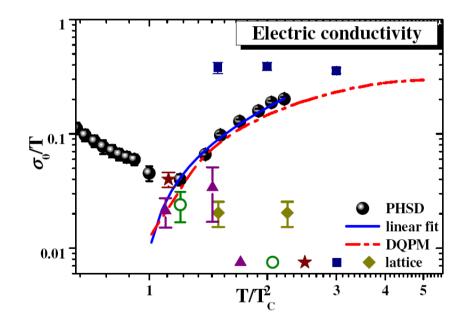
**TTTC**: fast increase of the ratio  $\eta$ /s for hadronic matter

lower interaction rate of hadronic system

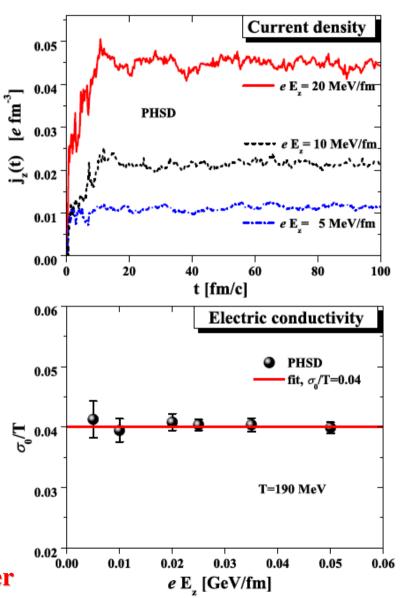
 smaller number of degrees of freedom (or entropy density) for hadronic matter compared to the QGP



Eur. Phys. J. C 70, 243 (2010).

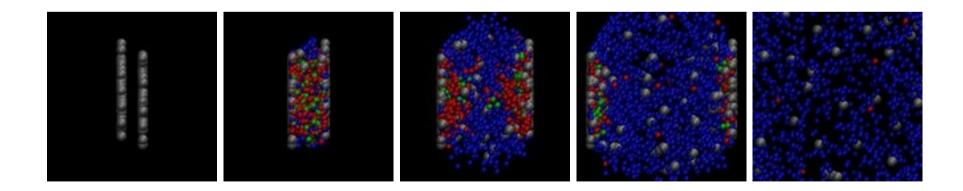

**QGP in PHSD** = strongly-interacting liquid

 The response of the strongly-interacting system in equilibrium to an external electric field eE<sub>z</sub> defines the electric conductivity σ<sub>0</sub>:


**Properties of parton-hadron matter – electric conductivity** 

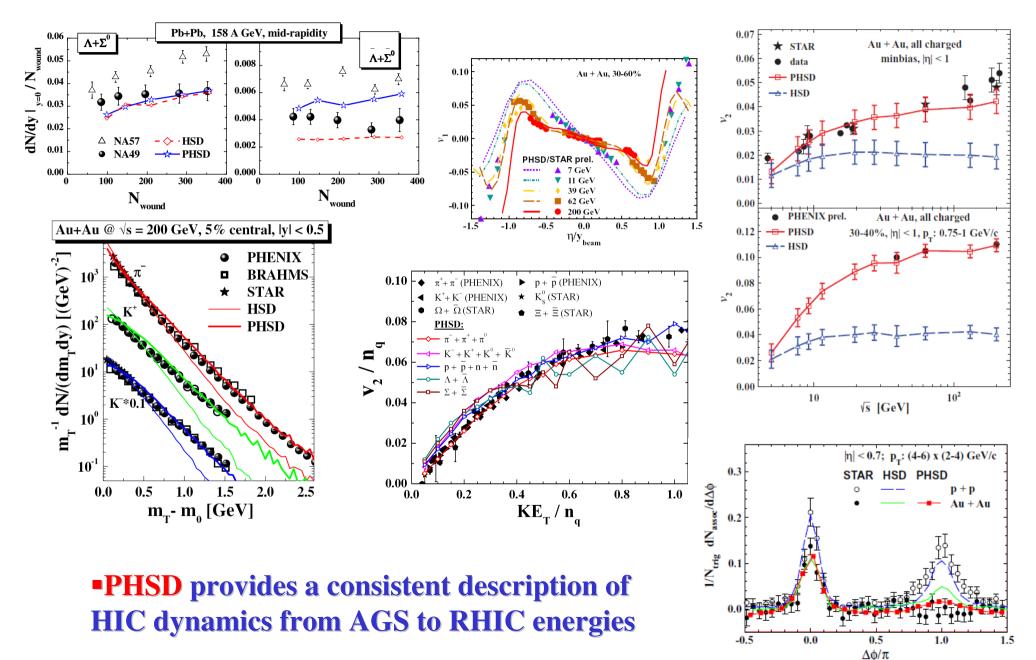
18

$$\frac{\sigma_0}{T} = \frac{j_{eq}}{E_z T}, \quad j_z(t) = \frac{1}{V} \sum_j eq_j \frac{p_z^j(t)}{M_j(t)}.$$




the QCD matter even at T~ T<sub>c</sub> is a much better electric conductor than Cu or Ag (at room temperature) by a factor of 500 !




W. Cassing et al., PRL 110(2013)182301

### Properties of QGP out-off equilibrium using PHSD

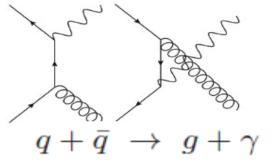




### **PHSD for HIC (highlights)**



### Photons from the hot and dense medium


#### from the QGP via partonic interactions:

Compton scattering

 $q(\bar{q}) + g \rightarrow q(\bar{q}) + \gamma \qquad q + \bar{q} \rightarrow g + \gamma$ 

q-qbar annihilation

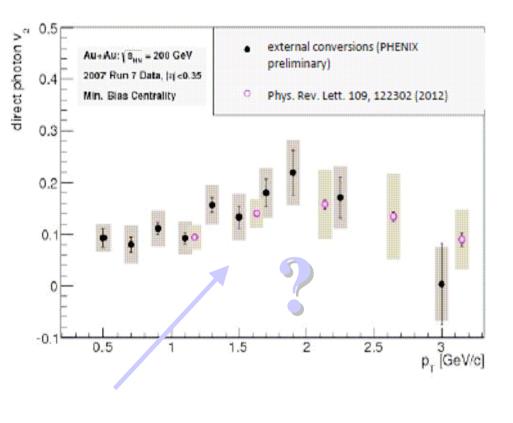
**Photon sources:** 



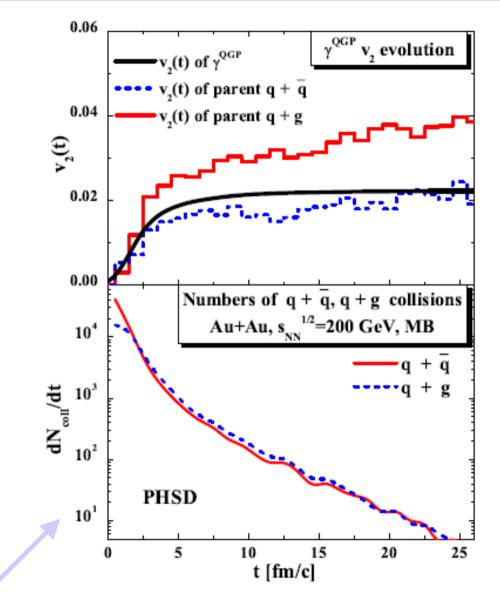
#### from hadronic sources:

•decays of mesons:

$$\pi \to \gamma + \gamma, \ \eta \to \gamma + \gamma, \ \omega \to \pi + \gamma$$
$$\eta' \to \rho + \gamma, \ \phi \to \eta + \gamma, \ a_1 \to \pi + \gamma$$


•secondary meson interactions:  $\pi + \pi \rightarrow \rho + \gamma, \ \rho + \pi \rightarrow \pi + \gamma$ 

using the off-shell extension of Kapusta et al. in PRD44 (1991) 2774


• meson-meson bremsstrahlung:  $m+m \rightarrow m+m+\gamma$ ,  $m=\pi,\eta,\rho,\omega,K,K^*,...$ using the soft-photon approximation



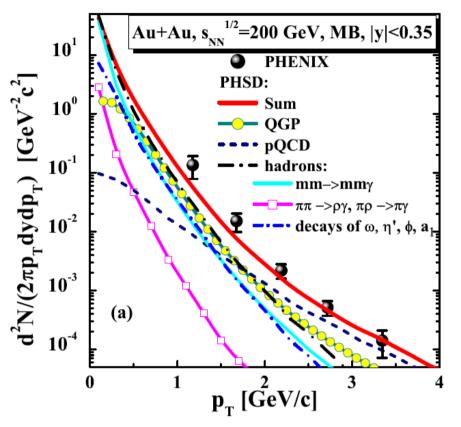
### **Photon elliptic flow**



Strong elliptic flow of photons seen by PHENIX is surprising, if the origin should be the QGP !



• QGP radiation occurs at early times when the flow is not yet developed!


Olena Linnyk et al., arXiv:1304.7030



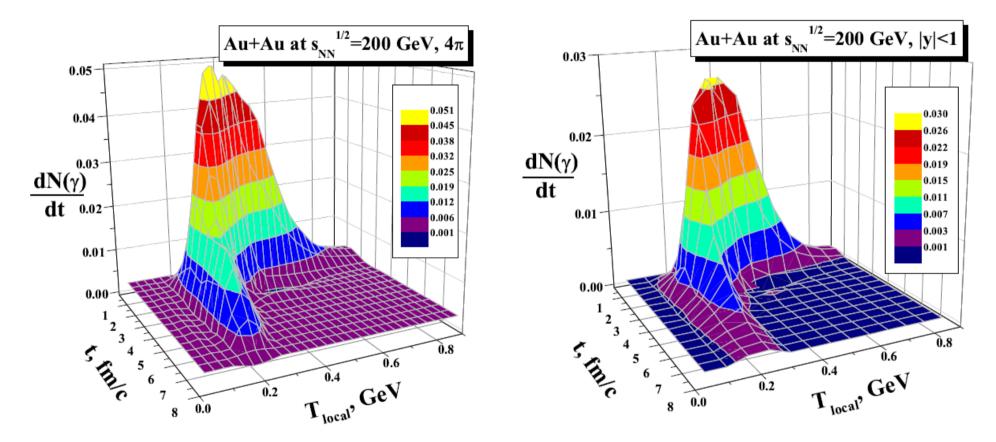
### **Photon spectra at RHIC**

#### Inclusive photon spectrum Au+Au, s<sub>NN</sub><sup>1/2</sup>=200 GeV, MB, |y|<0.35 $10^{3}$ PHSD • $d^{2}N/(2\pi p_{T}dydp_{T})$ [GeV<sup>-2</sup>c<sup>2</sup>] sum $10^2$ $\pi + \rho$ mm–>mmy **10**<sup>1</sup> $-\mathbf{q} + \mathbf{g}$ pQCD **0**<sup>0</sup> **10**<sup>-1</sup> 10<sup>-2</sup>/ 0.5 1.0 1.5 2.0 2.5 0.0 р<sub>т</sub> [GeV/c]

•  $\pi^0$  and  $\eta$  subtracted photon spectrum

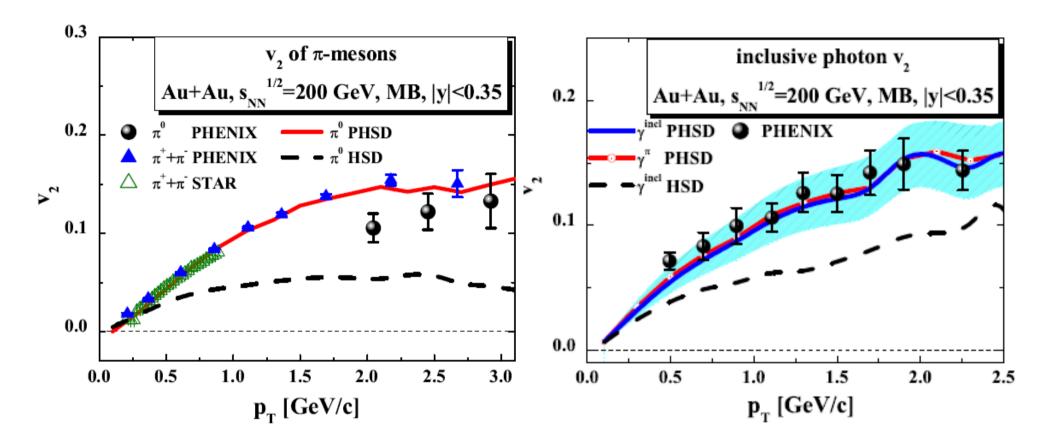


•  $\pi^0$  and  $\eta$  decays dominate the low  $p_T$  spectra


QGP sources mandatory to explain the spectrum (~50%), but hadronic sources are considerable, too

#### • The 'effective temperature' T<sub>eff</sub>:

| The slope parameter $T_{eff}$ (in MeV) |            |            |                     |
|----------------------------------------|------------|------------|---------------------|
| PHSD                                   |            |            | PHENIX              |
| QGP                                    | hadrons    | Total      | [38]                |
| $260 \pm 20$                           | $200\pm20$ | $220\pm20$ | $233 \pm 14 \pm 19$ |


### Time evolution of the photon production rate vs. T

•The photon production rate versus time and the local 'temperature' at the production point in  $4\pi$  and mid-rapidity Au+Au collisions:



■ Broad distribution of 'temperatures' → no universal 'temperature' can be assigned to the whole volume of the QGP or even in the mid-rapidity region





Pion elliptic flow is reproduced in PHSD and underestimated in HSD (i.e. without partonic interactions)

Iarge inclusive photon v<sub>2</sub> - comparable to that of hadrons - is reproduced in PHSD, too, because the inclusive photons are dominated by the photons from pion decay



#### Weighted' method (theor. way):

direct photon  $v_2$  (in PHSD) = sum of  $v_2$  of the individual channels, using their contributions to the spectrum as the relative  $p_T$  -dependent weights  $w_i(p_T)$ :

2.5

$$v_{2}(\gamma^{dir}) = \sum_{i} v_{2}(\gamma^{i}) w_{i}(p_{T}) = \frac{\sum_{i} v_{2}(\gamma^{i}) N_{i}(p_{T})}{\sum_{i} N_{i}(p_{T})}$$

$$i = (q\bar{q} \rightarrow g\gamma, qg \rightarrow q\gamma, \pi\pi/\rho \rightarrow \rho/\pi\gamma, mm \rightarrow mm\gamma, pQCD)$$

$$QGP$$

$$0.4$$

$$u_{1} + Au, s_{NN}^{-1/2} = 200 \text{ GeV}, MB, |y| < 0.35$$

$$v_{2}^{-dir} = v_{2}^{-BG} + R_{\gamma}(v_{2}^{-ind} - v_{2}^{-BG})/(R_{\gamma} - 1), \text{ with } R_{\gamma} \text{ from}$$

$$virtual \text{ photons}$$

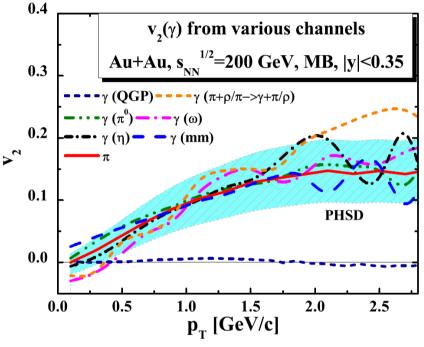
$$- v_{2}^{-dir} = \sum_{i} v_{2}^{-i} N_{i}(\gamma)/N_{tot}(\gamma)$$

$$O \text{ PHENIX}$$

$$0.1$$

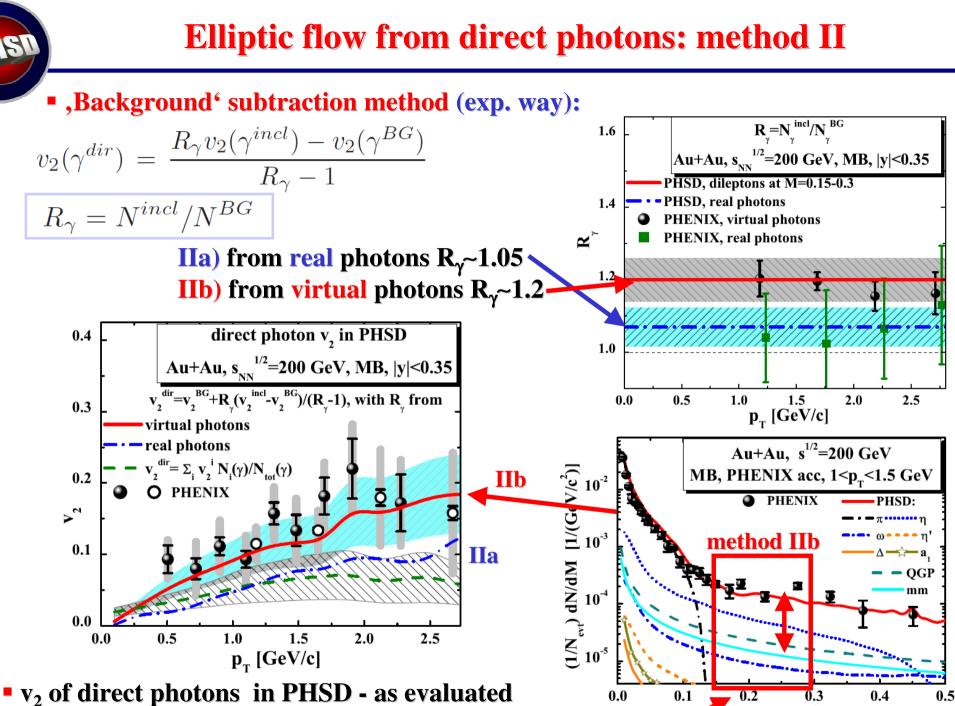
$$0.0$$

1.5


p<sub>T</sub> [GeV/c]

2.0

0.5


1.0

0.0



 v<sub>2</sub> of direct photons in PHSD - as evaluated by the weighted average of direct photon channels – underestimates the exp. data !

Olena Linnyk et al., arXiv:1304.7030



• v<sub>2</sub> of direct photons in PHSD - as evaluated by the ,background' subtraction method IIb is consistent with exp. data!

Olena Linnyk et al., arXiv:1304.7030

M  $[GeV/c^2]$ 

no  $\pi^0$ 



### Summary

•**PHSD** provides a consistent description of off-shell parton dynamics in line with the lattice QCD equation of state

 $\Box$  minimum of  $\eta$ /s close to T<sub>c</sub>

→ QGP in PHSD behaves almost as a strongly-interacting liquid

 $\Box$  minimum of  $\sigma_0/T$  close to  $T_C$ 

→ the QCD matter is a good electric conductor

#### •PHSD for HIC:

 $\Box$  Direct photons - the photons produced in the QGP - contribute about 50% to the observed spectrum, but have small  $v_2$ 

□ Large measured 'direct photon  $v_2$ ' – comparable to that of hadrons – is attributed to the intermediate hadronic scattering channels and hadronic resonance decays not subtracted from the data; the value of  $v_2$  is sensitive to the hadronic 'background' subtraction method

**The QGP phase** causes the strong elliptic flow of photons **indirectly** by enhancing the  $v_2$  of final hadrons due to the partonic interactions in terms of explicit parton collisions and the mean-field potentials



## **PHSD group**



Wolfgang Cassing (Giessen Univ.) Volodya Konchakovski (Giessen Univ.) Olena Linnyk (Giessen Univ.) Thorsten Steinert (Giessen Univ.) Elena Bratkovskaya (FIAS & ITP Frankfurt Univ.) Vitalii Ozvenchuk (HGS-HIRe, FIAS & ITP Frankfurt Univ.) Rudy Marty (FIAS, Frankfurt Univ.) Hamza Berrehrah (FIAS, Frankfurt Univ.) Daniel Cabrera (ITP&FIAS, Frankfurt Univ.)





External Collaborations: SUBATECH, Nantes Univ. : Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Texas A&M Univ.: Che-Ming Ko JINR, Dubna: Vadim Voronyuk Viatcheslav Toneev Kiev Univ.: Mark Gorenstein Barcelona Univ. Laura Tolos, Angel Ramos







