Search for exotic hyper-matter and measurement of nuclei with ALICE at the LHC

Benjamin Dönigus

Institut für Kernphysik Goethe Universität Frankfurt

for the ALICE Collaboration

Content

- Motivation
- ALICE performance
- Anti-Alpha
- Deuterons
- Search for Λn bound state
- Summary

Andronic, private communication, model described in Andronic et al., PLB 697, 203 (2011) and references therein

Motivation

- Explore QCD predictions for unusual multi-baryon states
- Search for rarely produced anti- and hyper-matter
- Test model predictions, e.g. thermal and coalescence

Particle identification techniques involved:

- Energy loss (d*E*/d*x*)
- Time-Of-Flight
- Topological

0.1

0.2

0.3

Time Projection Chamber (TPC)

ALICE

performance July 4th, 2012

5

Excellent d*E*/dx performance of TPC (~7% resolution in central Pb-Pb collisions)

An offline trigger selects events with at least one ³He/⁴He candidate

2

 $\frac{p}{z}$ (GeV/c)

З

Time-Of-Flight (TOF)

Anti-Alpha

For the full statistics of 2011 we identified 10 Anti-Alphas using TPC and TOF

Corresponds to 23x10⁶ events of a trigger mix (central, semi-central and min. bias)

SQM2013 - Benjamin Dönigus/ALICE

Secondaries

The measurement of nuclei is affected by a background coming from knockout from material (not relevant for antinuclei)

Rejection possible restricting DCA_{Z} and fitting the DCA_{XY} distribution

Deuterons

Deuterons are identified combining d*E*/d*x* and TOF

After cut on 3σ of d*E*/d*x* the m²-distribution is fitted with a Gaussian function

+ exponential tail

Deuterons: spectra

Characteristic hardening of the spectrum with increasing centrality qualitatively similar of to proton spectra

Lines shows individual Blast-Wave fits

Deuterons: B₂

The formation probability of nuclei can be quantified through the coalescence parameter B_A

$$E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^A$$

B₂ goes down with centrality, because d/p is constant and the overall proton multiplicity is increasing

Deuterons: d/p ratio

Deuteron-toproton ratio for different centralities and energies

ALICE measurement agrees with the average of PHENIX results

12

The measured deuteron yield is in good agreement with a equilibrium thermal model fit with a temperature of $T \approx 156$ MeV

Multiplicity dN/dy Pb-Pb Vs_{NN}=2.76 TeV 10² 10 PRELIMINARY Data, ALICE, 0-10% (preliminary) Thermal model fit, χ²/N₄ = 30.5/12 10⁻¹ T=156 MeV, V=5380 fm³ (μ_{b} = 1 MeV fixed) T=164 MeV, μ_{r} = 1 MeV, V=4499 fm³ (norm. to π^{+}) $\pi^{+} \pi^{-} K^{+} K^{-} K^{0}_{s} K^{*0} \phi p \overline{p} \Lambda \Xi^{-} \overline{\Xi}^{+} \Omega^{-} \overline{\Omega}^{+} d$

Andronic et al., Nucl. Phys. A 772, 167 (2006) Andronic et al., PLB 697, 203 (2011) and references therein

Λn bound state

HypHI experiment at GSI sees evidence of a new state: $\Lambda n \rightarrow d \pi^{-}$

http://www.bnl.gov/hhi/files/talks/TakehikoSaito.pdf, as shown 1.3.2012

An bound state

Assuming a V0 type decay topology

IBIRMINGHAN

2013

Efficiency estimation from Monte Carlo simulation

SQM2013 - Benjamin Dönigus/ALICE

Λn bound state: results

 \rightarrow thermal model would need to be wrong by a factor ~10

BIRMINGHAM

Comparison

Different predicting models are of the same order

At least factor 10 between models and estimated upper limit

BIRMINGHAM

Comparison

Different predicting models are of the same order

At least factor 10 between models and estimated upper limit

Conclusion

- ALICE has excellent capabilities for detecting different particle species (stable, weakly and strongly decaying)
- The combination of different particle identification techniques (TPC dE/dx and TOF) allows for measurement of (anti-)nuclei
 - Anti-Alpha
 - Deuterons
- Measured deuteron yields in agreement with current best thermal fit from equilibrium thermal model
- Upper limits for An bound state and H-Dibaryon are significantly lower than all predicting models (thermal and coalescence)

Backup

H-Dibaryon

Efficiency estimation from Monte Carlo simulation (generated flat in y and p_T) for the detection of the H-Dibaryon

Assuming the lifetime to be that of the Λ

H-Dibaryon

 $p_{\rm T}$ -shape of the H-Dibaryon (and Λ n bound state) estimated from the extrapolation of Blast-Wave fits for p,K, π

units) 0.02 Normalised to 1 and Λn arb convoluted with **H-Dibaryon** Acceptance x Efficiency dyd*p*⊤ d²N to get a weighted 0.01 efficiency Unknown p_{T} -shape is the main source of uncertainty: 10 Therefore used different functions for the systematics p_{T} (GeV/c) (limiting cases: blast-wave of deuteron and helium-3)

15

H-Dibaryon

- BIRMINGHAM 2013 Hypothetical bound state of *uuddss* ($\Lambda\Lambda$)
 - First predicted by Jaffe in a bag model calculation (*Jaffe, PRL 38, 195*) ullet+617(1977)
 - Recent lattice calculations suggest (Inoue et al., PRL 106, 162001 ۲ (2011) and Beane et al., PRL 106, 162002 (2011)) a bound state (20-50 MeV/ c^2 or 13 MeV/ c^2)
 - Shanahan et al., PRL 107, 092004 (2011) and Heidenbauer, Meißner, *PLB 706, 100 (2011)* made chiral extrapolation to a physical pion mass and got as result:
 - the H is unbound by $13\pm 14 \text{ MeV}/c^2$, respectively lies close to the Ξp threshold
 - \rightarrow Renewed interest in experimental searches

No visible signal

From the non observation we obtain as upper limits:

For a strongly bound H: $\rightarrow dN/dy \le 8.4 \times 10^{-4} (99\% \text{ CL})$

For a lightly bound H:

→ $dN/dy \le 2x10^{-4}$ (99% CL)

Used thermal model prediction at 164 MeV is $dN/dy=3.1\times10^{-3}$ \rightarrow thermal model would need to be wrong by a factor ~10

Λn bound state

Lifetime dependency

۲
B
R
1
H > O IVI
P2012
≤ 2015

H-Dibaryon

Lifetime (s)	Decay length (cm)	Efficiency	Upper limit dN/dy 99% CL		
1.3 x 10 ⁻¹⁰	3.95	0.0531	0.00061		
2.63 x 10 ⁻¹⁰	7.89	0.0385	0.00084		
5.2 x 10 ⁻¹⁰	15.8	0.0308	0.0011		
1.4 x 10 ⁻⁹	42	0.0154	0.0017		
An bound state					
Lifetime (s)	Decay length (cm)	Efficiency	Upper limit dN/dy 99% CL		
1.3 x 10 ⁻¹⁰	3.95	0.022	0.001708		
Lifetime (s) 1.3 x 10 ⁻¹⁰	۸r Decay length (cm) 3.95	bound state Efficiency 0.022	Upper limit dN/dy 99% CL 0.001708		

2.63 x 10 ⁻¹⁰	7.89	0.0255	0.001474
5.2 x 10 ⁻¹⁰	15.8	0.032	0.001174
1.4 x 10 ⁻⁹	42	0.044	0.000854

Comparison

Upper limits: An bound state: 1.5x10⁻³

BIRMINGHAM

H-Dibaryon: 2x10⁻⁴ (8.4x10⁻⁴)

Thermal model (equilibrium) 164 MeV – Andronic, private communication:

Particle	Yield dN/dy	Yield scaled to 0-80%			
An bound state	0.065	0.01625			
H-Dibaryon ($\Lambda\Lambda$)	0.01016	0.00254			
Thermal model (non-equilibrium) 138.8 MeV – Petran, private communication:					
Particle	Yield dN/dy	Yield scaled to 0-80%			
An bound state	0.086827	0.0391			
H-Dibaryon ($\Lambda\Lambda$)	0.011396	0.00516			
Coalescence model (only H-Dibaryon) - ExHIC Collaboration, PRC 84, 064910 (2011):					
Model	Yield dN/dy	Yield scaled to 0-80%			