Hadronic Resonances in Heavy-Ion Collisions at ALICE

A. G. Knospe
for the ALICE Collaboration
The University of Texas at Austin
25 July 2013
Introduction

- This Presentation: K^*^0 and ϕ in Pb–Pb collisions
- Hadronic Phase: Temperature and Lifetime of fireball
 - Resonance formation at hadronization, through regeneration
 - Re-scattering prevents resonance reconstruction
 - Most important at low p_T (< 2 GeV/c)
 - Statistical models and UrQMD predict resonance/stable ratios
 - Given chemical freeze-out temperature and/or time between chemical and thermal freeze-out (Δt)
- Chiral Symmetry Restoration
 - Resonances that decay when chiral symmetry was at least partially restored would exhibit mass shifts and width broadening

![Diagram showing temperature and lifetime correlations](image-url)
VZERO (scintillators): centrality estimate through measurement of amplitude in VZERO

ITS (silicon): Tracking and Vertexing

TPC: Tracking and Particle ID through dE/dx
K^*^0 and ϕ in Pb-Pb
Resonance Reconstruction

- Event Selection:
 - $|v_z| < 10$ cm
 - K^*0: 8.2 M events
 - ϕ: 9.5 M events
- Hadronic Decays
- PID: TPC $dE/dx: 2\sigma_{TPC}$ cut
- Combinatorial Background: Event Mixing
 - Require similar v_z, multiplicity, event plane
- Fit Residual Background + Peak

K^*0 B.R. = 66.6%
$\tau = 4.05$ fm/c

ϕ B.R. = 48.9%
$\tau = 46.3$ fm/c
Resonance Reconstruction

- **Event Selection:**
 - \(|v_z| < 10 \text{ cm}\)
 - \(K^*: 8.2 \text{ M events}\)
 - \(\phi: 9.5 \text{ M events}\)

- **Hadronic Decays**

- **PID:** TPC \(dE/dx: 2\sigma_{TPC}\) cut

- **Combinatorial Background:** Event Mixing
 - Require similar \(v_z\), multiplicity, event plane

- **Fit Residual Background + Peak**

![Graph 1](image1.png)

- **Significance:** 55\(\sigma\), \(S/B = 0.00019\)

![Graph 2](image2.png)

- **Significance:** 38\(\sigma\), \(S/B = 0.01\)

\(p_T < 5.0 \text{ GeV/c}, |y| < 0.5\)

\(K^0 + \bar{K}^0 \rightarrow K^+ + \bar{K}^-\)

\(Pb-Pb, S_{NN} = 2.76 \text{ TeV, Centrality 0-20\%}\)

\(|<0.5y, |c<1 \text{ GeV/c}|\)

\(0.8<p_T<1 \text{ GeV/c}, |y|<0.5\)

Statistical Uncertainties

\(12/07/2013\)

\(29/05/2013\)
• **K*⁰**: Mass and width consistent with MC HIJING Simulation
 – No centrality dependence

![Mass and Width](image-url)
• K^*: Mass and width consistent with MC HIJING Simulation
 – No centrality dependence

ϕ: Mass and width consistent with Vacuum Values
 – No centrality dependence

• Signatures of chiral symmetry restoration are not observed
 – Caveat: reconstructing the hadronic decays
• Fit Corrected Spectra (in centrality intervals)
 □ ϕ: Boltzmann-Gibbs Blast Wave Function
 • Extrapolate ϕ yield to low p_T (~15% of total yield)
 – K^*: Lévy-Tsallis Function
 • Spectrum reaches $p_T=0$, no extrapolation needed
• $<p_T>$ appears to increase for more central Pb–Pb collisions
• $<p_T>$ in pp at $\sqrt{s}=7$ TeV
 – Consistent with peripheral Pb–Pb
 – Lower than central Pb–Pb
• $<p_T>$ greater at LHC than RHIC
 – For K^*: 20% larger
 – For ϕ: 30% larger
• ALICE π,K,p spectra: global blast-wave fit shows ~10% increase in radial flow w.r.t. RHIC
 – See Also: Talk by M. Chojnacki, SQM 2013
Particle Ratios vs. Centrality

- ϕ/π and ϕ/K independent of centrality
 - K^*/K^-: apparent decrease for central collisions
 - Suggests re-scattering effects in central collisions

\[
\frac{f}{p} = \frac{0.05}{0.1} \quad 0.15 \quad 0.2
\]

\[
\frac{K^0}{K^-} = \frac{0.05}{0.1} \quad 0.15 \quad 0.2
\]

\[\langle N_{\text{part}} \rangle\]
• Measured K^*/K^- ratio in central Pb–Pb smaller than in pp
 – Similar behavior at RHIC
• Model Predictions:

 Andronic [1]
 no re-scattering
 $T_{ch} = 156$ MeV
 Prediction: $K^*/K^- = 0.30$

 Torrieri/Rafelski [2-4]
 no re-scattering
 $T_{ch} = 156$ MeV
 Prediction: $K^*/K^- = 0.35$

our assumption, based on thermal model fits of ALICE data

K*⁰/K⁻ vs. Energy

- Measured K*⁰/K⁻ ratio in central Pb–Pb smaller than in pp
 - Similar behavior at RHIC
- Model Predictions:
 - Andronic [1]
 - no re-scattering
 - $T_{\text{ch}} = 156$ MeV
 - Prediction: K*⁰/K⁻ = 0.30
 - Torrieri/Rafelski [2-4]
 - no re-scattering
 - $T_{\text{ch}} = 156$ MeV
 - Prediction: K*⁰/K⁻ = 0.35
 - Torrieri/Rafelski [2-4]
 - no re-scattering
 - measured K*⁰/K⁻
 - Prediction: $T_{\text{ch}} = 120\pm13$ MeV
 - K*⁰/K⁻ = 0.194±0.051

- Measured K^*/K^- ratio in central Pb–Pb smaller than in pp
 - Similar behavior at RHIC
- Model Predictions:
 - Andronic [1]
 - no re-scattering
 - $T_{ch} = 156$ MeV
 - Prediction: $K^*/K^- = 0.30$
 - Torrieri/Rafelski [2-4]
 - no re-scattering
 - $T_{ch} = 156$ MeV
 - Prediction: $K^*/K^- = 0.35$
 - measured K^*/K^-
 - $T_{ch} = 120 \pm 13$ MeV
 - Prediction: Lifetime ≥ 1.5 fm/c

Calculation for SPS/RHIC energies

\(\phi/K \) vs. Energy

- \(\phi/K \) independent of energy and system from RHIC to LHC energies
Spectrum Shapes

- K^0 yield is modified by re-scattering, ϕ yield is not
 - Models (UrQMD) predict re-scattering strongest for $p_T < 2$ GeV/c
 - Can we observe p_T dependence of resonance suppression?
- Generate predicted K^0 and ϕ spectra:
 - Use blast-wave model, parameters (T_{kin}, n, and β_s) measured in global BW fits of π, K, and p in Pb–Pb collisions

Fit ranges: $0.5 < p_T(p) < 1$ GeV/c $0.2 < p_T(K) < 1.5$ GeV/c $0.3 < p_T(p) < 3$ GeV/c
Predicted Spectra

- **Model (0-20%)**: $T_{\text{kin}}=97.1$ MeV, $n=0.725$, $\beta_s=0.879$
 - K^0: Integral = Yield(K^\pm,Pb–Pb) × Ratio(K^0/K,pp)
 - ϕ: Integral = Yield(K^\pm,Pb–Pb) × Ratio(ϕ/K,pp)
 - Assumes no re-scattering and common freze-out

- **Centrality 0-20%**
 - K^0 yield suppressed w.r.t. prediction for $p_T<3$ GeV/c
 - Suppression is flat (≈0.6) for $p_T<3$ GeV/c
 - ϕ yield not suppressed
 - K^0 and ϕ follow similar trend for high p_T
Predicted Spectra

- **Model (60-80%)**: \(T_{\text{kin}} = 132.2\) MeV, \(n = 1.382, \beta_s = 0.798\)
 - \(K^0\): Integral = \(\text{Yield}(K^\pm, \text{Pb-Pb}) \times \text{Ratio}(K^0/K, pp)\)
 - \(\phi\): Integral = \(\text{Yield}(K^\pm, \text{Pb-Pb}) \times \text{Ratio}(\phi/K, pp)\)
 - Assumes no re-scattering and common freze-out

- **Centrality 0-20%**
 - \(K^0\) yield suppressed w.r.t. prediction for \(p_T < 3\) GeV/c
 - Suppression is flat \((\approx 0.6)\) for \(p_T < 3\) GeV/c
 - \(\phi\) yield not suppressed
 - \(K^0\) and \(\phi\) follow similar trend for high \(p_T\)

- **Centrality 60-80%**
 - Neither suppressed
 - Deviations at high \(p_T\) similar to other particles

![Graph](image-url)
K*0/p and φ/p vs. p_T

- K*0/p and φ/p:
 - Flat for central collisions
 - Increasing slope for peripheral collisions
 - Peripheral Pb–Pb similar to pp (√s=7 TeV)
- Different production mechanism for K*0, p, or φ in central vs. peripheral & pp?
- <p_T> peripheral → central:
 - <p_T> of π±, K±, K*0, and φ increases by ~20%
 - <p_T> of protons increases by 50%
• Ratio in Pb-Pb consistent with Au-Au (200 GeV) for $p_T<3.5$ GeV/c.
• VISH2+1 and HKM (hydro) predictions consistent with data for $p_T<2.5$ GeV/c.
• KRAKOW model (hydro) consistent with data for $2.5<p_T<3.7$ GeV/c.
• HIJING/Bb̅ does not describe data (does predict flat ratio at high p_T).

![Graph showing the ratio of Ω/ϕ vs. p_T with various models and data points.](image-url)
• Central Collisions:
 – Low p_T: $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
 – High p_T:
 • $R_{AA}(\phi)$ between $R_{AA}(\pi,K)$ and $R_{AA}(p)$
 • $R_{AA}(\phi)$ tends to be below $R_{AA}(p)$ despite larger ϕ mass, but consistent within uncertainties
 • $R_{AA}(\phi)$ below $R_{AA}(\Xi)$, despite similar strange quark content
 • All R_{AA} values converge around $p_T\approx 7$ GeV/c
• Peripheral Collisions:
 – $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
 – All R_{AA} values converge around $p_T\approx 4$ GeV/c
• $R_{CP}(K^{*0})$ tends to be lower than $R_{CP}(\phi)$, but same within uncertainties
- Central Collisions:
 - Low p_T: $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
 - High p_T:
 - $R_{AA}(\phi)$ between $R_{AA}(\pi, K)$ and $R_{AA}(p)$
 - $R_{AA}(\phi)$ tends to be below $R_{AA}(p)$ despite larger ϕ mass, but consistent within uncertainties
 - $R_{AA}(\phi)$ below $R_{AA}(\Xi)$, despite similar strange quark content
 - All R_{AA} values converge around $p_T \approx 7$ GeV/c
- Peripheral Collisions:
 - $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
 - All R_{AA} values converge around $p_T \approx 4$ GeV/c
- $R_{CP}(K^{*0})$ tends to be lower than $R_{CP}(\phi)$, but same within uncertainties
Central Collisions:
- Low p_T: $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
- High p_T:
 - $R_{AA}(\phi)$ between $R_{AA}(\pi, K)$ and $R_{AA}(p)$
 - $R_{AA}(\phi)$ tends to be below $R_{AA}(p)$ despite larger ϕ mass, but consistent within uncertainties
 - $R_{AA}(\phi)$ below $R_{AA}(\Xi)$, despite similar strange quark content
 - All R_{AA} values converge around $p_T \approx 7$ GeV/c

Peripheral Collisions:
- $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
- All R_{AA} values converge around $p_T \approx 4$ GeV/c
- $R_{CP}(K^{*0})$ tends to be lower than $R_{CP}(\phi)$, but same within uncertainties
Central Collisions:
- Low p_T: $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
- High p_T:
 - $R_{AA}(\phi)$ between $R_{AA}(\pi, K)$ and $R_{AA}(p)$
 - $R_{AA}(\phi)$ tends to be below $R_{AA}(p)$ despite larger ϕ mass, but consistent within uncertainties
 - $R_{AA}(\phi)$ below $R_{AA}(\Xi)$, despite similar strange quark content
 - All R_{AA} values converge around $p_T \approx 7$ GeV/c

Peripheral Collisions:
- $R_{AA}(\phi)$ follows $R_{AA}(p)$ and $R_{AA}(\Xi)$
- All R_{AA} values converge around $p_T \approx 4$ GeV/c
- $R_{CP}(K^{*0})$ tends to be lower than $R_{CP}(\phi)$, but same within uncertainties
Conclusions

• Resonance Mass and Width
 – When K^* and ϕ are reconstructed via hadronic decays, no mass shifts or width broadening

• $<p_T>$ larger for more central collisions
 – Larger at LHC than at RHIC (increased radial flow)

□ ϕ/K flat with centrality

• But K^*/K decreases with centrality (re-scattering may reduce reconstructible K^* yield)
 – Use measured K^*/K + thermal model + re-scattering [Torrieri/Rafelski] to estimate lifetime of hadronic phase: $\geq 1.5 \text{ fm/c}$

• K^* suppression flat in p_T (≈ 0.6) for $p_T<3$ GeV/c

• K^*/p and ϕ/p ratios vs. p_T:
 – Flat in central collisions
 – Increasing slope for peripheral collisions (despite very similar masses of these particles)

• R_{AA} at low p_T: $R_{AA}(\phi) = R_{AA}(p) = R_{AA}(\Xi)$

• R_{AA} at intermediate p_T: $R_{AA}(\pi, K) \leq R_{AA}(\phi) \leq R_{AA}(p) \leq R_{AA}(\Xi) \leq R_{AA}(\Omega)$
Backup
Finding Resonances

Event Selection:
\(|v_z| < 10 \text{ cm}\)
8.2 M events for K*\(^0\)
9.5 M event for \(\phi\)

Find \(\pi^\pm, K^\pm\):
- **Track Cuts:**
 - Number of TPC Clusters
 - Track \(\chi^2\)
 - DCA to Primary Vertex
 - Others…
- **Particle Identification:**
 - TPC Energy Loss (\(dE/dx\))
 - \(2\sigma_{TPC}\) cut for \(\pi\) and \(K\)

Find Decay Products

\(K^*^0\) Branching Ratio: 66.6%
\(\phi\) Branching Ratio: 48.9%
Corrections

- Efficiency \times Acceptance from simulation
- PID Efficiency $(2\sigma_{TPC} \, dE/dx$ cuts on each daughter $\rightarrow \varepsilon_{PID} = 91\%)$
\(\phi/\pi \) vs. Energy

- \(\phi/\pi \) independent of energy and system at LHC energies

 uncertainties: stat. (bars), sys. (shaded boxes), \(\sqrt{\text{stat.}^2 + \text{sys.}^2} \) (empty boxes)

- PHENIX Au-Au
- STAR Au-Au
- NA49 Pb-Pb
- PHENIX pp
- STAR pp
- NA49 pp

ALICE Preliminary Pb-Pb

ALICE pp

ALICE

ALI−PREL−26719
\(K^*/\pi \) and \(\phi/\pi \) vs. \(p_T \)

- \(K^*/\pi \) and \(\phi/\pi \): increase with \(p_T \)
 - Slope decreases for peripheral collisions
 - Peripheral Pb–Pb similar to pp (\(\sqrt{s} = 7 \) TeV)
K*^0/K and φ/K vs. \(p_T \)

- **K*^0/K and φ/K**: (linear) increase with \(p_T \)
 - Slope decreases for peripheral collisions
 - Peripheral Pb–Pb similar to pp (\(\sqrt{s}=7 \text{ TeV} \))
 - Similar behavior in K*^0/\(\pi \) and φ/\(\pi \) ratios
- Increase with p_T at low p_T
- Saturate or begin to decrease at high p_T
- Become flatter for peripheral collisions
p_T-Dependent Ratios

$|y|<0.5$, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV, Centrality 0-20%

uncertainties: stat. (bars), sys. (boxes)
Blast-Wave Fit Parameters

• Blast-wave parameters from $\pi/K/p$ paper
 – central \rightarrow peripheral: T_{kin} and n increase, β_s decreases