# Perspective of angular correlations study triggered by $\mathrm{V}^{0}$ strange particles in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $V_{\mathrm{S}_{\mathrm{NN}}}=2.76 \mathrm{TeV}$ 

## Marek Bombara on behalf of the ALICE Collaboration

(Pavol Jozef Šafárik University, Košice, Slovakia)


Strangeness in Quark Matter 2013
University of Birmingham, UK
22-27 July 2013

## Contents

- Motivation:
- Di-hadron correlations
- $\mathrm{V}^{0}-\mathrm{h}$ correlations
- Two-particle correlation technique
- Results:
- Jet-like peak shape evolution
- Centrality dependence of the $\sigma_{\Delta \varphi}$ and $\sigma_{\Delta \eta}$
- Centrality dependence of excess kurtosis
- Outlook on studying $\mathrm{V}^{0}-\mathrm{h}$ correlations
- Summary


## Motivation

- Jet shapes and fragmentation functions show excess at low $p_{\mathrm{T}}$ (large radii) but high $p_{\mathrm{T}}$ (core) is unchanged [G. Veres for the CMS, Nucl. Phys. A 904-905 (2013) 146c-153c]
- Two-particle correlations are sensitive to jet quenching and modification of jet fragmentation
- The jet shape can be deformed by a longitudinally flowing medium [N. Armesto, C. Salgado, U. Wiedemann - PRL 93, 242301 (2004)] $\Rightarrow$ different jet widths in $\Delta \varphi$ and $\Delta \eta$ in central heavy-ion collisions:


Data points: STAR preliminary [F. Wang for the STAR Collaboration, Quark Matter 2004]


## $\mathrm{V}^{0}-\mathrm{h}$ angular correlations

- The quark and gluon jets can be distinguishable (on statistical basis) due to their multiplicity and width [J. Gallicchio and M. D. Schwartz, PRL 107, 172001 (2011)] and also baryon and meson content [OPAL, Eur.Phys.J.C8:241-254,1999]:
- the baryon production in gluon jets is enhanced with respect to quark jets
- Dividing $\mathrm{V}^{0}-\mathrm{h}$ correlations into two samples: meson-h ( $\mathrm{K}^{0}-\mathrm{h}$ ) and (anti)baryon-h ((anti) $\Lambda$-h) we might be able to study (on statistical basis):
- gluon jet enriched sample via (anti) $\Lambda$-h correlations
- quark/gluon jet sample via $\mathrm{K}^{0}-\mathrm{h}$ correlations
- The advantage using $\mathrm{V}^{0}-\mathrm{h}$ correlations is good $\mathrm{V}^{0}$ identification up to very high $p_{\mathrm{T}}$ via reconstruction of the daughter tracks:



## A Large Ion Collider Experiment

ALICE


Marek Bombara, Strangeness in Quark Matter 2013, Birmingham, July 23, 2013

## Same $\mathrm{N}_{\text {pairs }}(\Delta \varphi, \Delta \eta)$ (uncorrected) distribution



$$
\Delta \varphi=\varphi_{\text {associated }}-\varphi_{\text {trigger }}
$$

Trigger particles (h): $6<p_{\mathrm{T} \text {,trig }}<15 \mathrm{GeV} / \mathrm{c}$ Associated particles (h): $3<p_{\mathrm{T}, \text { assoc }}<p_{\mathrm{T}, \text { trig }}$

Same event pairs: the Near-side jet-like peak sits on a triangular shaped background.

$\Delta \eta=\eta_{\text {associated }}-\eta_{\text {trigger }}$


ALI-PERF-52120

## Mixed $\mathrm{N}_{\text {pairs }}(\Delta \varphi, \Delta \eta)$ distributions

## ALICE



## Event 2

$$
\Delta \varphi=\varphi_{\text {associated }}-\varphi_{\text {trigger }}
$$

Background determination: the triangular shape can be reproduced by mixed pairs, where the trigger and the associated particle come from different events.


ALI-PERF-52140

## Acceptance corrected correlations

Background subtraction:
$\frac{\mathrm{d}^{2} N^{\text {raw }}}{\mathrm{d} \Delta \phi \mathrm{d} \Delta \eta}(\Delta \phi, \Delta \eta)=\frac{N_{\text {pair }}^{\text {same }}(\Delta \phi, \Delta \eta)}{N_{\text {pair }}^{\text {mixed }}(\Delta \phi, \Delta \eta)} \beta$

The normalization factor $\beta$ was chosen in such a way that the mixed $\mathrm{N}_{\text {pairs }}(\Delta \varphi, \Delta \eta)$ distribution is 1 at $\Delta \varphi=\Delta \eta=0$.


ALI-PERF-52144

Additional corrections to be applied:

- single track efficiency and contamination correction (from secondary particles)
- track merging/splitting correction


## Di-hadron angular correlations

The angular correlations can be quantified by the per trigger associated particle yield:

$$
\frac{\mathrm{d}^{2} N}{\mathrm{~d} \Delta \phi \mathrm{~d} \Delta \eta}(\Delta \phi, \Delta \eta)=\frac{1}{N_{\text {trig }}} \frac{\mathrm{d}^{2} N_{\text {assoc }}}{\mathrm{d} \Delta \phi \mathrm{~d} \Delta \eta}
$$

for $p_{\mathrm{T}, \text { trig }}$ and $p_{\mathrm{T}, \text { assoc }}$ intervals.


## Flow modulated background subtraction

## ALICE

- Assumptions: flow is independent of $\Delta \eta$ and the jet does not contribute to $|\Delta \eta|>1.0$
- Signal extracted by subtracting the side bands $1<|\Delta \eta|<1.6$ ( $\eta$-gap method)
- Not suitable for Away-side peak study




## Jet-like peak shape evolution


broadening

## Centrality dependence of the $\sigma_{\Delta \varphi}$ and $\sigma_{\Delta \eta}$




- The Near-side peak was fitted with a sum of two 2D Gaussians centred at $\Delta \varphi=\Delta \eta=0$, the fit parameters were used to calculate $\sigma$ in $\Delta \varphi$ and in $\Delta \eta$
- The $\sigma_{\Delta \varphi}$ : independent of centrality, decreasing with higher $p_{\text {T,assoc }}$ and $p_{\mathrm{T}, \text { trig }}$
- The $\sigma_{\Delta \eta}$ : broader moving to central events, decreasing with higher $p_{T, \text { assoc }}$ and $p_{T, \text { trig }}$


## ALICE <br> Centrality dependence of the excess kurtosis



- Excess kurtosis $\left(\mathrm{K}_{\Delta \varphi}, \mathrm{K}_{\Delta \eta}\right)=\mu_{4} / \mu_{2}{ }^{2}-3\left(\mu_{\mathrm{n}}-\mathrm{n}^{\text {th }}\right.$ moment about the mean $)$ : measurement of peakedness of the distribution (Laplace: $\mathrm{K}=3$, Gaussian: 0 , semicircle: -1 , uniform: -1.2)
- Both kurtosis (in $\Delta \varphi$ and in $\Delta \eta$ ) decrease going to lower $p_{\text {T }}$ (the peaks are "less sharp") and decrease in more central events
- Almost flat top for lowest $p_{\text {T }}$ interval in $\Delta \eta$


## Outlook on studying $\mathrm{V}^{0}-\mathrm{h}$ correlations

## Data:

- $\mathrm{Pb}-\mathrm{Pb}$ at $ل_{\mathrm{S}_{\mathrm{NN}}}=2.76 \mathrm{TeV}, 30 \mathrm{M}$ events effectively triggered on centrality, taken in 2011
$\mathrm{V}^{0}$ selection:
- $\mathrm{V}^{0}$ candidates were selected using track topological cuts
- $|\mathrm{y}|<0.75$

Invariant mass distributions for most central events ( $0-10 \%$ ):


$\mathrm{V}^{0}$ candidates in coloured area are used for the correlation analysis.

## Outlook on studying $\mathrm{V}^{0}-\mathrm{h}$ correlations

Acceptance corrected correlations (the plots are not efficiency corrected):
Trigger particles $\left(\mathrm{V}^{0}\right): 6<p_{\text {T,trig }}<15 \mathrm{GeV} / \mathrm{c}$ Associated particles (h): $3<p_{\mathrm{T}, \text { assoc }}<p_{\mathrm{T}, \text { trig }}$


ALI-PERF-52148

$$
\mathrm{K}_{\mathrm{S}}{ }_{\mathrm{S}}-\mathrm{h}
$$



ALI-PERF-52152

$$
(\Lambda+\operatorname{anti} \Lambda)-h
$$

The jet-like peaks are clear and well above the background: the analysis is feasible.

## Summary

- Jet-like peaks in di-hadron correlations get broader going to lower $p_{\mathrm{T}}$ intervals of trigger and associated particles and to more central $\mathrm{Pb}-\mathrm{Pb}$ collisions
- Jet-like peak width in $\Delta \varphi$ : no centrality dependence
- Jet-like peak width in $\Delta \eta$ : broadening in central $\mathrm{Pb}-\mathrm{Pb}$ collisions (interplay with longitudinal flow?)
- Kurtosis study: peak narrowing for higher $p_{\mathrm{T}}$ (trigger and associated) correlations and flattening in central $\mathrm{Pb}-\mathrm{Pb}$ collisions
- $\mathrm{V}^{0}-\mathrm{h}$ correlations: with possible tagging of quark and gluon jets on statistical basis it is an interesting alternative of measuring colour charge type energy loss
- Outlook for $\mathrm{V}^{0}$-h: clear jet-like peaks show feasibility of measurement in central $\mathrm{Pb}-\mathrm{Pb}(0-10 \%)$, it will be interesting to study $\mathrm{V}^{0}-\mathrm{h}$ also in pp and $\mathrm{p}-\mathrm{Pb}$ collisions


## Backup slides

## ALICE $\quad$ Same $\mathrm{N}_{\text {pairs }}(\Delta \varphi, \Delta \eta)$ (uncorrected) distributions (0-10\%)

Trigger particles ( $\mathrm{V}^{0} \mathrm{~s} / \mathrm{h}$ ): $6<p_{\mathrm{T}, \text { trig }}<15 \mathrm{GeV} / \mathrm{c}$ Associated particles (h): $3<p_{\mathrm{T}, \text { assoc }}<p_{\mathrm{T}, \text { trig }}$


ALI-PERF-52124

$$
\mathrm{K}^{0}{ }_{\mathrm{S}-\mathrm{h}}
$$

Same event pairs: the Near-side jet-like peak sits on a triangular shaped background.


ALI-PERF-52128
( $\Lambda+$ anti $\Lambda$ )-h

## Mixed $\mathrm{N}_{\text {pairs }}(\Delta \varphi, \Delta \eta)$ distributions (0-10\%)

Background determination: the triangular shape can be reproduced by mixed pairs, where the trigger and the associated particle come from different events.


ALI-PERF-52136
$K^{0}{ }_{S}$-h


ALI-PERF-52132
( $\Lambda+$ anti $\Lambda$ )-h

