

1

Perspective of angular correlations study triggered by V⁰ strange particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Marek Bombara on behalf of the ALICE Collaboration

(Pavol Jozef Šafárik University, Košice, Slovakia)

Strangeness in Quark Matter 2013 University of Birmingham, UK 22-27 July 2013

- Motivation:
 - Di-hadron correlations
 - V⁰-h correlations
- Two-particle correlation technique
- Results:
 - Jet-like peak shape evolution
 - Centrality dependence of the $\sigma_{\Delta\phi}$ and $\sigma_{\Delta\eta}$
 - Centrality dependence of excess kurtosis
- Outlook on studying V⁰-h correlations
- Summary

Motivation

- Jet shapes and fragmentation functions show excess at low p_T (large radii) but high p_T (core) is unchanged [G. Veres for the CMS, Nucl. Phys. A 904-905 (2013) 146c-153c]
- Two-particle correlations are sensitive to jet quenching and modification of jet fragmentation
- The jet shape can be deformed by a longitudinally flowing medium [N. Armesto, C. Salgado, U. Wiedemann PRL 93, 242301 (2004)] \Rightarrow different jet widths in $\Delta \phi$ and $\Delta \eta$ in central heavy-ion collisions: Data points: STAR preliminary [F. Wang for

V⁰-h angular correlations

- The quark and gluon jets can be distinguishable (on statistical basis) due to their multiplicity and width [J. Gallicchio and M. D. Schwartz, PRL 107, 172001 (2011)] and also baryon and meson content [OPAL, Eur.Phys.J.C8:241-254,1999]:
 - the baryon production in gluon jets is enhanced with respect to quark jets
- Dividing V⁰-h correlations into two samples: meson-h (K⁰-h) and (anti)baryon-h ((anti)Λ-h) we might be able to study (on statistical basis):
 - gluon jet enriched sample via (anti) Λ -h correlations
 - quark/gluon jet sample via K⁰-h correlations
- The advantage using V⁰-h correlations is good V⁰ identification up to very high p_T via reconstruction of the daughter tracks:

Same $N_{\text{pairs}}(\Delta \varphi, \Delta \eta)$ (uncorrected) distribution

ALI-PERF-52120

Trigger particles (h): $6 < p_{T,trig} < 15 \text{ GeV/c}$ Associated particles (h): $3 < p_{T,assoc} < p_{T,trig}$

Same event pairs: the Near-side jet-like peak sits on a triangular shaped background.

Mixed N_{pairs}($\Delta \phi$, $\Delta \eta$) distributions

 $\Delta \phi = \phi_{associated} - \phi_{trigger}$

Background determination: the triangular shape can be reproduced by mixed pairs, where the trigger and the associated particle come from different events.

Acceptance corrected correlations

Background subtraction:

$$\frac{\mathrm{d}^2 N^{raw}}{\mathrm{d}\Delta\phi\mathrm{d}\Delta\eta}(\Delta\phi,\Delta\eta) = \frac{N^{same}_{pair}(\Delta\phi,\Delta\eta)}{N^{mixed}_{pair}(\Delta\phi,\Delta\eta)}\beta$$

The normalization factor β was chosen in such a way that the mixed $N_{\text{pairs}}(\Delta \phi, \Delta \eta)$ distribution is 1 at $\Delta \phi = \Delta \eta = 0$.

Additional corrections to be applied:

- single track efficiency and contamination correction (from secondary particles)
- track merging/splitting correction

Di-hadron angular correlations

The angular correlations can be quantified by the per trigger associated particle yield:

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\Delta\phi\mathrm{d}\Delta\eta}(\Delta\phi,\Delta\eta) = \frac{1}{N_{\mathrm{trig}}}\frac{\mathrm{d}^2 N_{\mathrm{assoc}}}{\mathrm{d}\Delta\phi\mathrm{d}\Delta\eta}$$

for $p_{T,trig}$ and $p_{T,assoc}$ intervals.

Flow modulated background subtraction

Jet-like peak shape evolution

Centrality dependence of the $\sigma_{\Delta\phi}$ and $\sigma_{\Delta\eta}$

- The Near-side peak was fitted with a sum of two 2D Gaussians centred at $\Delta \phi = \Delta \eta = 0$, the fit parameters were used to calculate σ in $\Delta \phi$ and in $\Delta \eta$
- The $\sigma_{\Delta\varphi}$: independent of centrality, decreasing with higher $p_{T,assoc}$ and $p_{T,trig}$
- The $\sigma_{\Delta\eta}$: broader moving to central events, decreasing with higher $p_{T,assoc}$ and $p_{T,trig}$

Centrality dependence of the excess kurtosis

- Excess kurtosis $(K_{\Delta\phi}, K_{\Delta\eta}) = \mu_4/\mu_2^2 3 (\mu_n n^{th} \text{ moment about the mean})$: measurement of peakedness of the distribution (Laplace: K=3, Gaussian: 0, semicircle: -1, uniform: -1.2)
- Both kurtosis (in $\Delta \varphi$ and in $\Delta \eta$) decrease going to lower p_T (the peaks are "less sharp") and decrease in more central events
- Almost flat top for lowest $p_{\rm T}$ interval in $\Delta \eta$

Outlook on studying V⁰-h correlations

Data:

- Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV, 30 M events effectively triggered on centrality, taken in 2011

V⁰ selection: - V⁰ candidates were selected using track topological cuts - |y|<0.75

Invariant mass distributions for most central events (0-10%):

V⁰ candidates in coloured area are used for the correlation analysis.

Acceptance corrected correlations (the plots are not efficiency corrected):

Trigger particles (V⁰): $6 < p_{T,trig} < 15 \text{ GeV/c}$ Associated particles (h): $3 < p_{T,assoc} < p_{T,trig}$

The jet-like peaks are clear and well above the background: the analysis is feasible.

- Jet-like peaks in di-hadron correlations get broader going to lower p_T intervals of trigger and associated particles and to more central Pb-Pb collisions
- Jet-like peak width in $\Delta \varphi$: no centrality dependence
- Jet-like peak width in $\Delta \eta$: broadening in central Pb-Pb collisions (interplay with longitudinal flow?)
- Kurtosis study: peak narrowing for higher p_T (trigger and associated) correlations and flattening in central Pb-Pb collisions
- V⁰-h correlations: with possible tagging of quark and gluon jets on statistical basis it is an interesting alternative of measuring colour charge type energy loss
- Outlook for V⁰-h: clear jet-like peaks show feasibility of measurement in central Pb-Pb (0-10%), it will be interesting to study V⁰-h also in pp and p-Pb collisions

Backup slides

ALICE Same N_{pairs}($\Delta \varphi$, $\Delta \eta$) (uncorrected) distributions (0-10%)

Trigger particles (V⁰s/h): $6 < p_{T,trig} < 15 \text{ GeV/c}$ Associated particles (h): $3 < p_{T,assoc} < p_{T,trig}$ Same event pairs: the Near-side jet-like peak sits on a triangular shaped background.

Marek Bombara, Strangeness in Quark Matter 2013, Birmingham, July 23, 2013

Mixed N_{pairs}($\Delta \varphi$, $\Delta \eta$) distributions (0-10%)

Background determination: the triangular shape can be reproduced by mixed pairs, where the trigger and the associated particle come from different events.

