

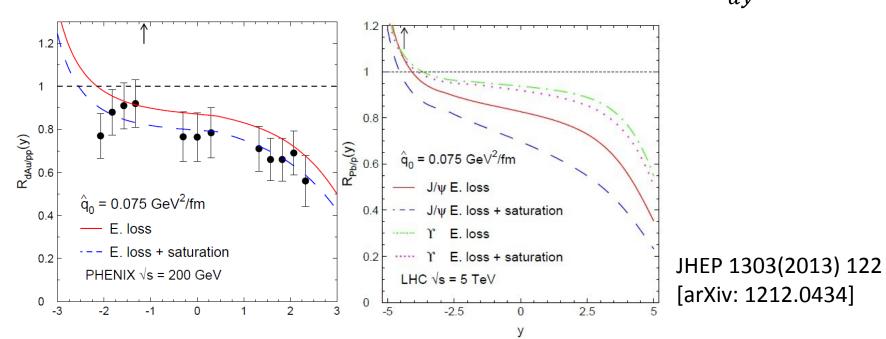
Latest LHCb Results from the pA/Ap data

BIRMINGHAM

Liang Zhong Tsinghua University On behalf of the LHCb collaboration

> Strangeness in Quark Matter, Birmingham, July 22-27, 2013

- Physics Motivation
- LHCb detector
- Measurement of J/ψ cross section
- Preliminary result from pilot pA run
- Prospect for pA physics
- Summary


➢ pA collision is of considerable interest

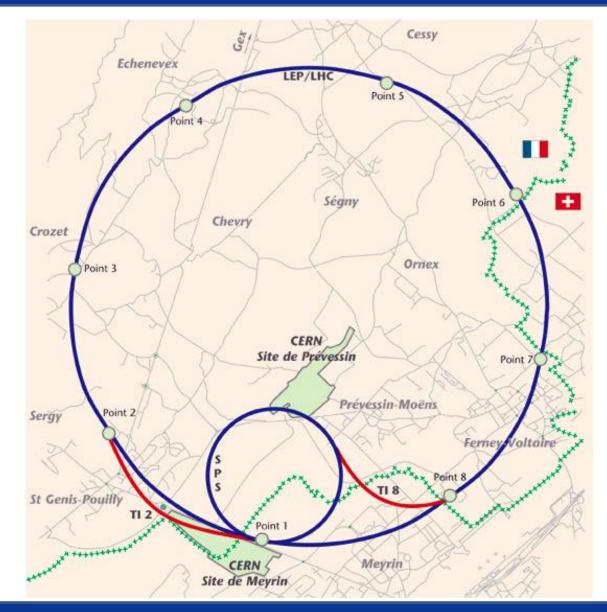
- Decouples the quark gluon plasma effect from cold nuclear matter effect →crucial for the understanding of Heavy Ion Physics
- Study soft QCD, low-x physics, energy-loss vs. saturation effects
- Study multi-parton interactions using chargedparticle production
- > LHCb can play an important role
 - Unique pseudorapidity coverage, not accessible by other LHC experiments

Quarkonium production in pA

 $R_{pA}(y,\sqrt{s})$

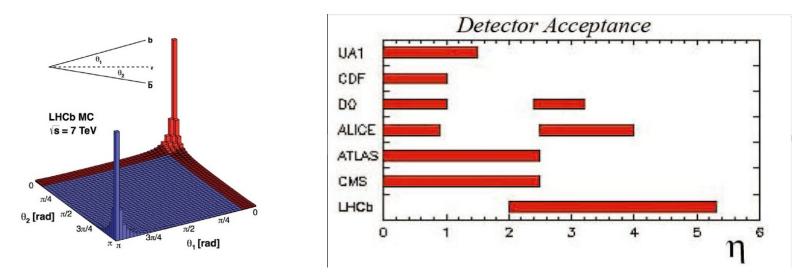
- Production of heavy quarkonia at large rapidity suppressed in pA w.r.t pp collisions
- The nuclear modification factor R_{pA} strongly depends on rapidity:

• Measurement of R_{pA} test models of cold nuclear matter effects.


> The forward-backward production ratio can be measured.

 $=\frac{1}{A}\cdot\frac{\frac{dy}{dy}(y,\sqrt{s})}{\frac{d\sigma_{pp}}{d\sigma_{pp}}(y,\sqrt{s})}$

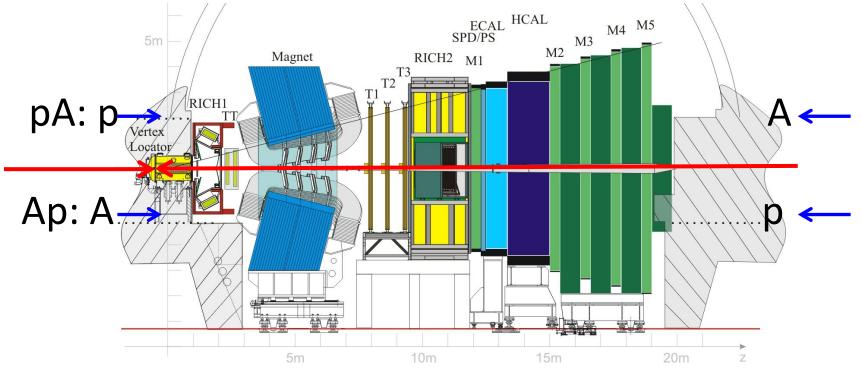
The LHCb detector



Liang Zhong

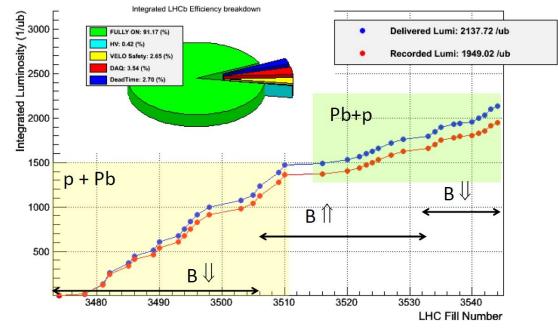
- Dedicated to heavy flavour physics, but also performs very well for proton-lead collisions
- Forward acceptance ($2 < \eta < 5$)
 - Takes advantage of the predominant forward production of heavy flavoured hadrons
 - Unique among LHC detectors, complementary to the General Purpose Detectors.

The LHCb detector



Liang Zhong

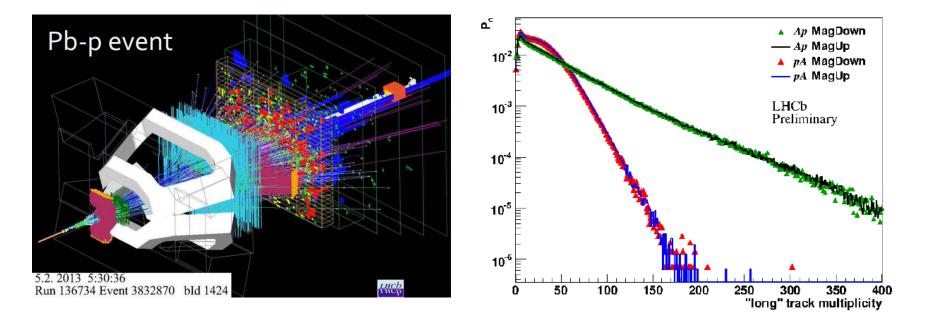
Beam configurations



- p: E = 4 TeV, Pb: E per nucleon = 1.58 TeV => $\sqrt{s_{NN}} = 5$ TeV
- Pseudorapidity coverage: pA: $1.5 < \eta < 4.5$ forward production (defined in c.m.s) Ap: $-5.5 < \eta < -2.5$ backward production (pp: $2 < \eta < 5$)

LHCb pA Data Taking

LHCb Integrated Luminosity at p-Pb 4 TeV in 2013



- Low inst. lumi: ~ 5×10^{27} /cm²/s (very low pile-up)
- Integrated lumi. $\sim 1/\mu b$ in 2012 pilot run, $\sim 2/nb$ in 2013
- Take data with four different configurations:
 pA / Ap ; magnet up (B ↑) / down (B↓)
 The J/ψ results shown here based on 0.75/nb pA and 0.3/nb Ap, B↓ of 2013 data

Liang Zhong

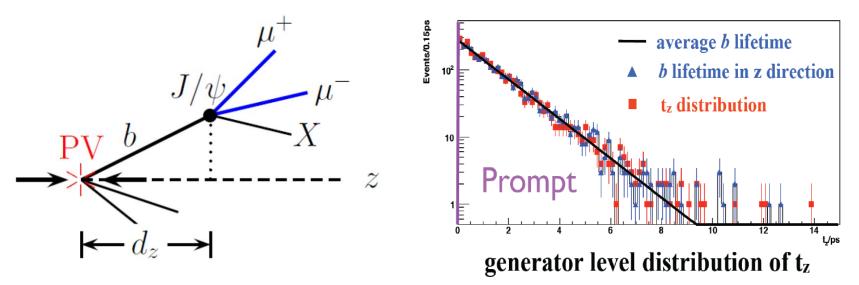
Event properties

- Magnet Up/Down agree with both beam configurations
- Higher track multiplicity in Ap, as expected

J/ψ analysis [LHCb-CONF-2013-008]

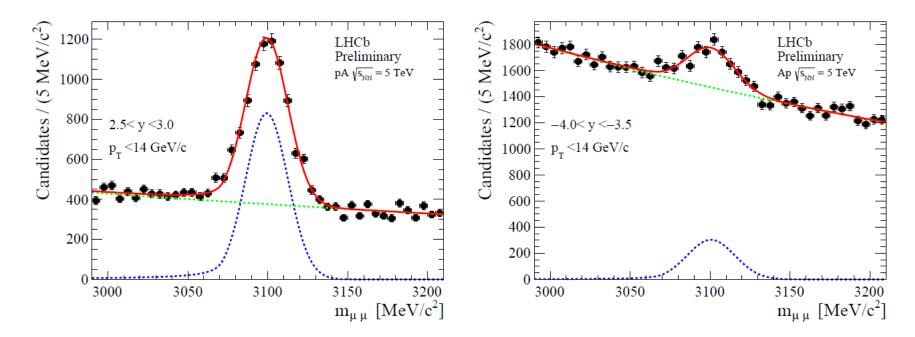
Liang Zhong

 J/ψ from b

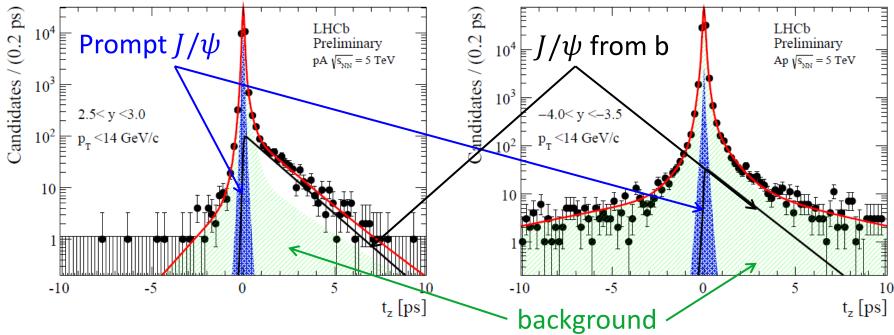

- Three sources of J/ψ
 - Direct production
 - Feed down from higher states, e.g $\psi(2S)$, χ_c Prompt J/ψ
 - From b hadrons decays
- Analysis strategy
 - Same method as for J/ψ cross section measurement in pp collisions
 - Measure production cross section in bins of y or $p_{\rm T}$ both for prompt J/ψ and J/ψ from b
 - Use pseudo-proper time to separate prompt J/ψ and J/ψ from b (see next slide)

• Pseudo-proper time

$$t_z = \frac{(z_{J/\psi} - z_{PV}) \cdot M_{J/\psi}}{p_z}$$


- Take advantage of the large lifetime of b hadrons and excellent resolution of LHCb VELO
- Clear separation between prompt J/ ψ and J/ ψ from b

• Yields in each bin are obtained from simultaneous fit to the dimuon invariant mass and the pseudo-proper time t_z


Mass distribution:

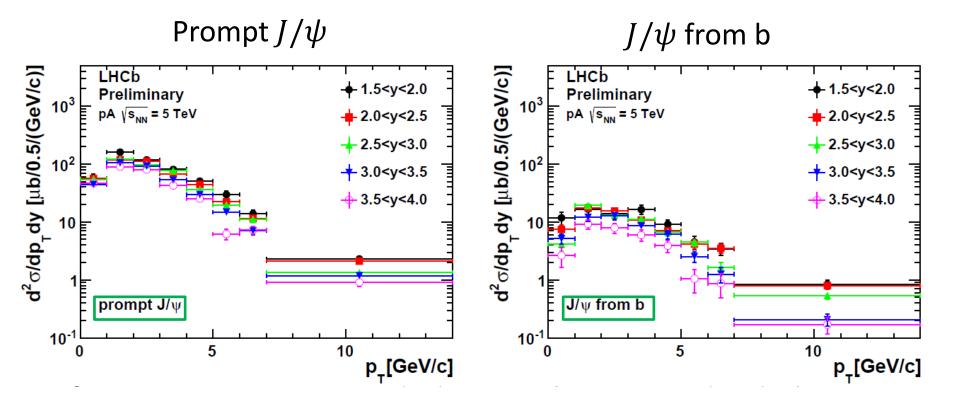
- Signal: CB function
- Background : Exponential function

 Yields in each bin are obtained from simultaneous fit to the dimuon invariant mass and the pseudo-proper time t_z

t_z distributions:

- Signal : Prompt J/ψ : $\delta(t_z)$ function convolves with gaussian J/ψ from b: Exponential function convolves with gaussian
- Background: empirical function from sideband

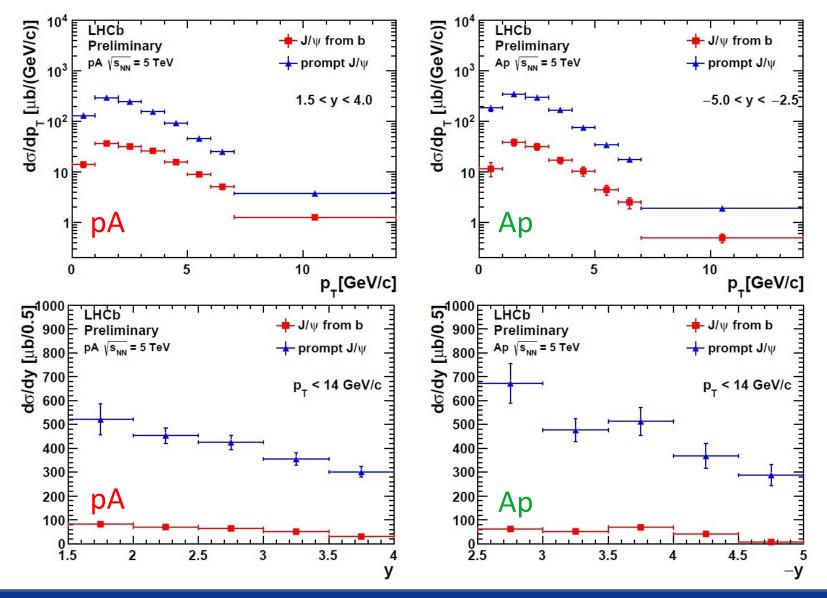
Preliminary study of total J/ψ production



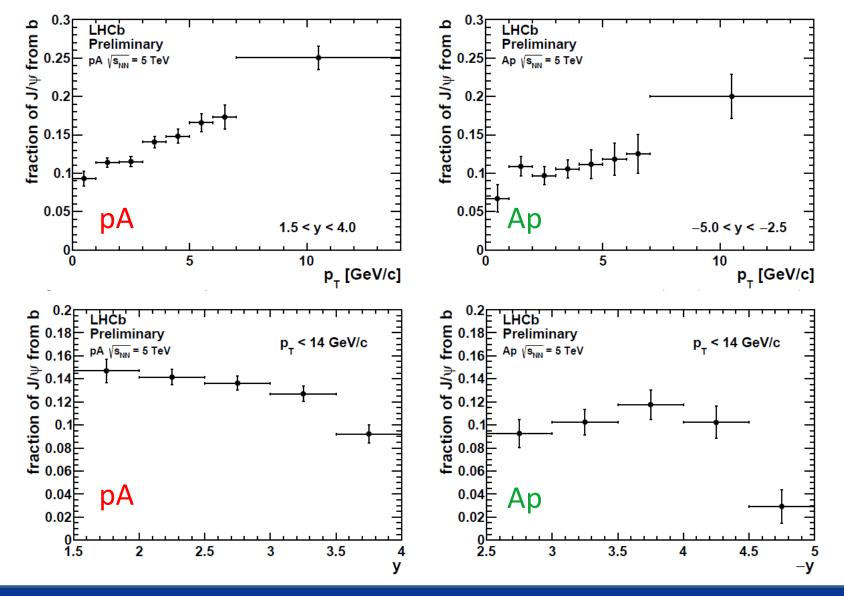
- Total production of prompt J/ψ and J/ψ from b in LHCb
 - pA: $p_T < 14 \text{GeV}/c$, 1.5 < y < 4.0
 - $\sigma_{pA}(\text{prompt } J/\psi) = 1028.2 \pm 13.6(\text{stat.}) \pm 88.6(\text{syst.})\mu b$
 - $\sigma_{pA}(J/\psi \text{ from } b) = 150.1 \pm 4.2(\text{stat.}) \pm 12.6(\text{syst.})\mu b$
 - $\text{Ap:} p_T < 14 \text{GeV}/c, -5.0 < y < -2.5$
 - $\sigma_{Ap}(\text{prompt } J/\psi) = 1141.9 \pm 49.8(\text{stat.}) \pm 98.4(\text{syst.})\mu b$
 - $\sigma_{Ap}(J/\psi \text{ from } b) = 119.7 \pm 8.3(\text{stat.}) \pm 10.0(\text{syst.})\mu b$

Systematic uncertainties dominated by luminosity, fit model and data-MC discrepancy

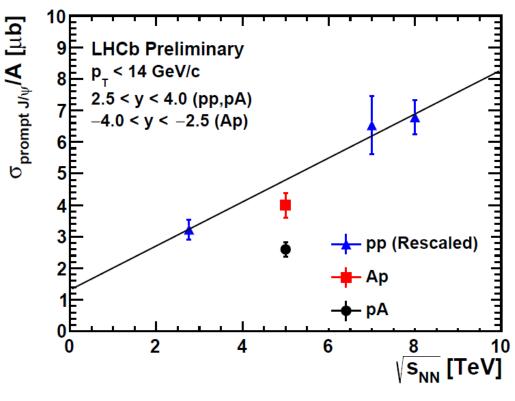
Double differential cross section in pA



Single differential cross-sections



Fraction of J/ψ from b

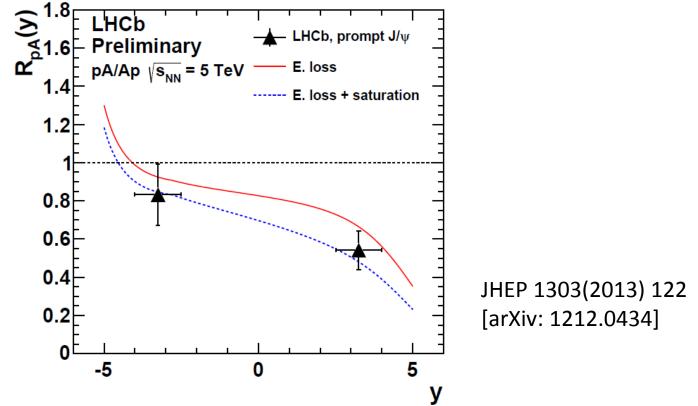


Liang Zhong

Comparison with other LHCb results

Compare prompt J/ψ only

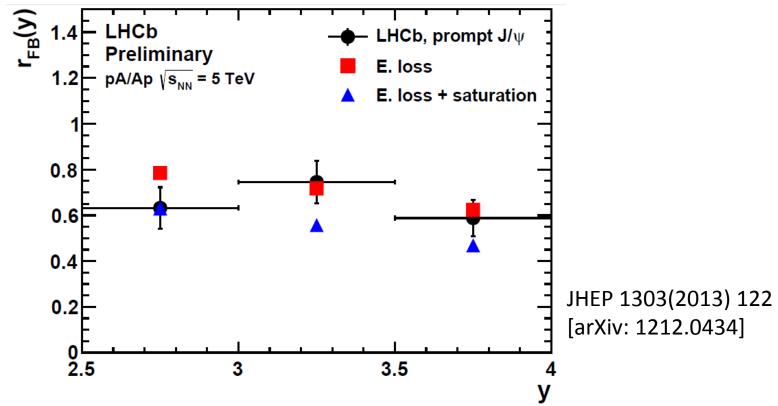
- Rescaled σ_{pp} in common rapidity range: 2.5 < y < 4.0
- J/ψ cross section scaled by 1/A: A=208 for p-Pb/Pb-p and A=1 for p-p
- Linearly interpolate prompt J/ψ cross section at other energy to obtain $\sigma_{pp}(5\text{TeV})$


Clear suppression in pA, while slight suppression in Ap

JHEP 02(2013) 041[arXiv:1212.1045]Eur.Phys.J.C71(2011) 1645[arXiv:1103.0423]LHCb-PAPER-2013-016[arXiv:1304.6977]

Comparison with theoretical predictions

- Nuclear modification factor $R_{pA}(y)$
 - Agree with theoretical predictions
 - With current precision unable to distinguish nuclear effects with or without saturation


Comparison with theoretical predictions

• Forward-backward production asymmetry $r_{FB}(y)$

$$-r_{FB}(y) = R_{pA}(+|y|)/R_{Ap}(-|y|)$$

- Clear asymmetry between forward-backward production
- Agree with theoretical predictions

Pilot run data analysis [LHCb-CONF-2012-034]

Liang Zhong

Inelastic pA cross section measurement

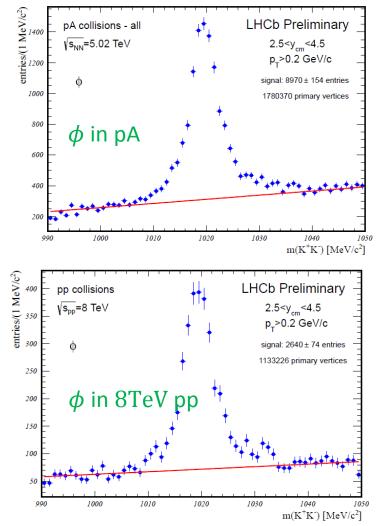
- Inelastic pA cross section $\sigma_{pA} = \frac{N_{pA}}{L \cdot \epsilon}$
 - Event tag: at least one reconstructed track in the detector
 - At least one charged track in 2.5 < y < 4.5 with $p_T > 0.2 \text{GeV}/c$
 - Trigger efficiency $\sim (99 \pm 1)\%$
 - Event count efficiency: $\epsilon_{ev} = (98 \pm 2)\%$
- Measured cross section: $\sigma_{pA} = 2.09 \pm 0.12 \text{ b}$
 - Agree with expected result: $\sigma_{pp} \times A^{2/3} \sim 2.1 \text{ b}$

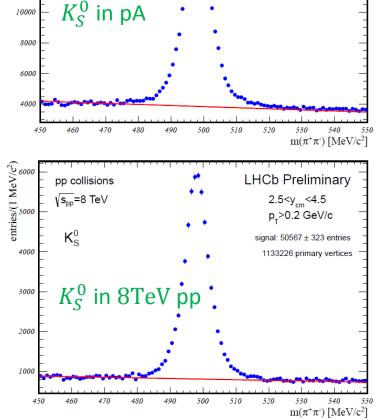
- Compare strange and charm hadron production in pA and pp collisions in the fiducial region 2.5 < y < 4.5 and $p_T > 0.2 \text{GeV}/c$
- Define production ratio *R* to illustrate the enhancement in particle production when going from pp to pA

$$-R = \frac{N_{pA}/n_{PV,pA}}{N_{pp}/n_{PV,pp}}$$

- Very preliminary result: Uncorrected, should receive a positive correction of 7%-16%
- Results with the statistical error only

Strangeness production


entries/(1 MeV/c²)


12000

pA collisions - all

√s_{NN}=5.02 TeV

 K_{S}^{0}

LHCb Preliminary

2.5<y__<4.5

p_>0.2 GeV/c

signal: 138719 ± 677 entries

1780370 primary vertices

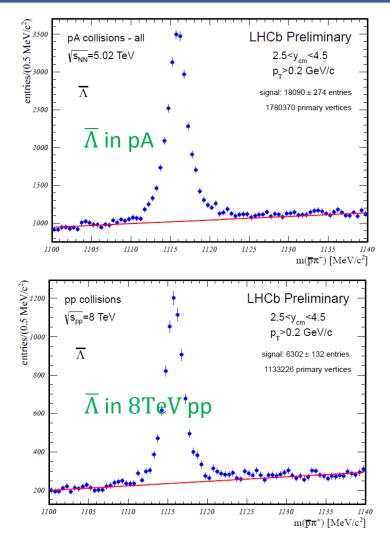
 $R(\phi) = 2.163 \pm 0.071$

 $R(K_S^0) = 1.746 \pm 0.014$

Strangeness production

entries/(0.5 MeV/c²) 000 000 000

2500


2000

pA collisions - all

√s_{NN}=5.02 TeV

 Λ in pA

Λ

1500 1000 1100 1105 1110 1115 1120 1125 1130 1135 1140 $m(p\pi^{-})$ [MeV/c²] entries/(0.5 MeV/c²) 000 007 LHCb Preliminary pp collisions √s_{pp}=8 TeV 2.5<y_<4.5 p_>0.2 GeV/c signal: 6947 ± 133 entries Λ 1133226 primary vertices 800 Λ in 8TeV₊pp₊ 600 400 200 1100

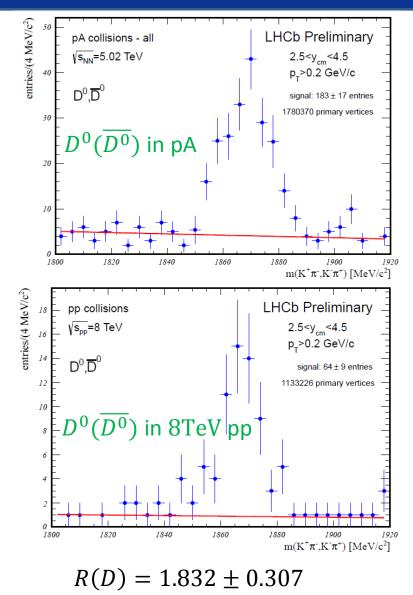
LHCb Preliminary

2.5<y_<4.5

p_r>0.2 GeV/c

signal: 19837 ± 274 entries

1780370 primary vertices


 $R(\overline{\Lambda}) = 1.827 \pm 0.047$

$R(\Lambda) = 1.818 \pm 0.043$

Liang Zhong

Liang Zhong

SQM 2013, Univ. of Birmingham

28

- Further analysis planned with the pA data sample
 - Charged particle production
 - Central exclusive production
 - Jet production
 - $-\psi(2S)$ and $\Upsilon(nS)$ production
 - Open charm production
 - Drell-Yan processes
 - Particle correlations
 - Low-x physics

- ~2/nb of pA/Ap collisions recorded at LHCb
 - Unique opportunities on specific physics measurements
 - Important for the understanding of heavy-ion physics and for probing some particular QCD physics phenomena
- A number of interesting measurements have been performed so far:
 - $-J/\psi$ production cross-sections as function of p_T and y
 - Nuclear modification factor R_{pA} and forward-backward production asymmetry r_{FB} as a function of y
 - \rightarrow Clear J/ψ suppression observed, in good agreement with theory
- The pilot run also provides many interesting results.
- More results with larger sample are expected soon!

• Backup

Source	Systematic uncertainty (%)
Correlated between bins	
Mass fits	1.8
Tracking efficiency	1.5
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	1.0
Luminosity	5.0
t_z fit (only for J/ψ from b)	5.0
Vertexing, track quality, etc.	3.5
Uncorrelated between bins	
Binning	0.1 to 14

LH