Prospects for heavy flavour measurements with the ALICE inner tracker upgrade

C. Terrevoli University and INFN Cagliari **for the ALICE Collaboration**

- ALICE Upgrade physics program
- Inner Tracking System (ITS)
- Heavy Flavour Performance in ALICE with the current ITS
- How to Upgrade?
- Physics performances with the ITS Upgrade
- Conclusion

ALICE Inner Tracking System Upgrade Physics program

ALICE is the general purpose Heavy-ion detector at the CERN LHC

Investigate properties of strongly interacting matter under extreme conditions of compression and temperature in Pb-Pb collisions - Characterization of the Quark-Gluon Plasma (QGP)

The upgrade of the ALICE inner tracker detector targets physics topics in which ALICE can bring a unique contribution in QGP characterization, among others, via heavy flavour probes

- Measurements of heavy flavour transport parameters in QGP via the probe-medium interaction
 - Heavy flavour azimuthal anisotropy and R_{AA}
 - Heavy Flavour baryon-to-mesons ratio
 - Mass dependence of energy loss
 → heavy flavour R_{AA} down to low p_T

Current Inner Tracking System

Capability to separate primary and secondary vertex of heavy flavour hadrons is provided by Inner Tracking System

6 layers of silicon detectors (pixels, drift, strips)

- PID (drift and strips)
- Low material budget: 7.2% X₀ for whole ITS

Limit: resolution not sufficient for Λ_c (ct= 60µm) d₀ resolution>60 µm for p_t<1GeV/c *Impossible in Pb-Pb*

- Coalescence models predict an increase of baryon-to-meson ratio for light flavour and strange hadrons (S.H.Lee Phys. Rev. Lett. 100, 222301 (2008))
 - ✓ Observed for p/π and Λ/K ratio at intermediate p_T
- Prediction also for heavy flavour
 - Λ_c , Λ_b not accessible in Pb-Pb with current detector due to limited precision and statistics
- If coalescence contributes to charm hadronization

 \rightarrow D_s production is expected to be enhanced w.r.t other D at low p_T

Omega Upgrade: $aim at measuring <math>\Lambda_c/D$ and Λ_b/B ratios and D_s production improving tracking precision, statistics and extend the measurement to low p_T

ALICE Performance Characterization of QGP via Heavy Flavour Anisotropy

Elliptic flow v_2 sensitive to the thermalization of c and b in QGP Models predicts (S.A. Voloshin arXiv:0809.2949 [nucl-ex], J.Aichelin arXiv:1201.4192):

- large D mesons v₂ at low momentum
- Mass dependence of v₂(B)<v₂(D)

How To Upgrade the ITS

- □ Improve impact parameter resolution by a factor of ~3
- Get closer to IP
- Beam pipe outer radius: r=17.2 mm (presently 29.8 mm)
- ✓ First layer at 22 mm (presently 39 mm)
- Reduce pixel size
- Pixel size (rφ, z): 20-30, 20-50 μm (presently: 50 x 425 μm)
- $\hfill\square$ High standalone tracking efficiency and p_T resolution
- \bullet Increase granularity pixels resolution 4 or 6 μm
- Increase number of layers 7 instead of 6

Fast readout

- continuous readout of Pb-Pb interactions at > 50 kHz in order to exploit the upgrade LHC luminosity (>10 nb⁻¹ in Pb-Pb that correspond to ~10¹⁰ central events)
 - The global Upgrade ALICE program concerns also the upgrade of the other main central barrel detectors, including the Time Projection Chamber (TPC) C.Terrevoli

- Reduce material budget
- ✓ 0.3% X₀ per pixel layer (presently 1.1%)

The upgrade is targeted for the second long shutdown (2017-2018).

ITS Upgrade Conceptual Design Report:CERN-LHCC-2012-013 https:://aliceinfo.cern.ch/system/files/alice_upgrade/LHCC-P-005.pdf Technical Design Report in preparation

ITS Upgrade Performance

- tracking efficiency >90% down to 0.1- 0.2 GeV/c
- ITS stand-alone p_T resolution: improved by a factor ~2

Beauty via displaced $J/\psi \rightarrow ee$

Direct measurement of beauty (via D⁰ and J/ ψ displaced) opens the possibility to measure with high precision the beauty energy loss (i.e. R_{AA}) and thermalization (i.e. v₂) covering a unique kinematic range (down to p_T~1 GeV/c) at LHC

Upgrade:

- precise v₂ measurement of prompt D and D from B
- * positive elliptic flow for non-prompt J/ ψ would be observed in 3<pT<8 GeV/c

Charmed baryons: Λ_c

$D_s: R_{AA} \text{ and } v_2$

✓ R_{AA} of D_s larger than the R_{AA} of non-strange D mesons: seems to be larger at lower p_T but not possible to conclude within the present uncertainties !

 Upgrade: Possibility to reduce strongly the uncertainties on the R_{AA} measurement and to extend the measurement in the low p_T region Possibility to evaluate v₂

 Pb-Pb, VS_{NN} = 2.76 TeV

 Plice

 Pitter

 <

Conclusions

 ALICE has a strong upgrade physics programme for precision QGP studies where Heavy flavour measurements play a central role

Main requirements:

- Enhanced rate capabilities and new Inner Tracking System
 - Strong increase of the statistical precision in the measurements of yields and spectra of charmed mesons and baryons
 - A significant extension of the present physics programme with new measurements

ALICE is looking forward to the precision phase of Quark-Gluon Plasma measurements

Strange D mesons: $D_s^+ \rightarrow K^-K^+\pi^+$ with Upgrade

- □ Recombination: in QGP low p_T partons recombined each other to form higher p_T hadrons
- □ Enhancement of strange flavour in QGP
 - The relative yield of D_s w.r.t non-strange D meson expected to be enhanced in Pb-Pb collisions at intermediate p_T if charm quarks hadronize via recombination in the medium
- Upgrade improve existing measurements:
- ✓ Reduce strongly the background and improve S/B
- ✓ reduce uncertainties and extend p_T range
 - ✓ current analysis in 3 p_T intervals from 4 to 12 GeV/c significance=3-4
- **som2013** with upgrade in 11 p_T intervals from 2 to 24 GeV/c

ALICE

B→J/ψ

pseudo proper decay length resolution

Improved resolution in prompt J/ ψ due to new ITS detector

~ Factor 2

B→J/ψ

Example of x and ee Invariant mass extraction in p_T bin 2-3 GeV/c with ITS Upgrade and high rate

Collective Flow

O Anisotropic particle momentum Ψ_{RP} butions

• relative to the reaction plane:

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left\{ 1 + 2\nu_1 \cos(\phi - \Psi_{RP}) + 2\nu_2 \cos(2(\phi - \Psi_{RP}) + \dots) \right\}$$

o Angle of particle:

e:
$$\nu_n(p_t,\eta) = \langle \cos(n(\phi - \Psi_n)) \rangle$$

o Magnitude:

➔ Valuable information on particle production mechanisms

- $p_T < 2-3$ GeV/c: flow pattern described by hydrodynamic models
- Handle on equation-of-state of medium
- $3 < p_T < 6$ GeV/c: flow larger for baryons than for mesons
- p_T > 8 GeV/c: high-energy parton fragmentation from initial hard scattering

SQM2013

PIXEL TECHNOLOGIES

Hybrid pixels

- Separate optimization of sensor and circuitry, complex in-pixel signal processing
- State-of-the-art detectors but are limited to inner layers due to their cost
- Charge collected by drift
- Proven radiation resistance to ALICE levels

Monolithic pixels

- Sensing layer is integrated into the CMOS chip
- Bias voltage electrode Have shown significant progress in recent years and will soon Figure - Rossi, L., Fischer, P., Rohe, T. & Wermes, N. (2006) Berlin: Springer. be installed in STAR (HFT)
- Charge mainly collected by diffusion (though some new developments on the way)
- Radiation resistance needs to be proven

