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Abstract. We address the physical meaning of coarse graining scale and the hidden statistical
ensemble in event by event analysis in hydrodynamic approach to heavy-ion collisions. It
is shown that these features are appropriately understood in the frame work of variational
formulation and pointed out that the local thermal equilibrium does not necessarily play a
critical role in the description of the collective flow patterns. We further discuss that the effect
of viscosity is also formlated in the form of the variational method including fluctuations.

Instituto de F́ısica, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972, Rio de
Janeiro, Brazil

E-mail: tkodama@if.ufrj.br, koide@if.ufrj.br

1. Introduction

Hydrodynamic approach on event-by-event (EbE) basis has been applied successfully to describe
the global and collective features of the data from relativistic heavy-ion collisions, particularly
to the behavior of the Fourier components of flow pattern {vn} as a function of centrality
and transverse momenta data [1], leading to a general expectation that we may determine
the equation of state (EoS) and transport coefficients in addition to the information on initial
collision dynamics. On the other hand, these successes brought us several new interesting
questions and mysteries. The most crucial one is why at all the hydrodynamic approaches work
so well for such violent and almost microscopic collisional processes. It is commonly believed that
the fundamental hypothesis for the validity of hydrodynamics is the local thermal equilibrium
(LTE). In this vision, we would conclude that the thermalization time and correlation length
should be extremely small. For AA collisions this could still be acceptable due to the large
number of partons involved, but surprisingly, the recent ALICE experiment reports a similar
collective flow pattern in the pA data, too [2]. This casts a very serious question for the proper
physical meaning of hydrodynamic description in pA collisions or, even in AA collisions [3]. In
this report, we address this question and point out that hydrodynamic behavior for a finite
set of observables does not necessarily mean the validity of LTE on real EbE basis, but works
effectively in statistical basis for the ensemble of events specified by these observables.

2. Relativistic Hydrodynamics and Role of Coarse Graining

Let us denote the conserved four-current density by nµ(x), satisfying the continuity equation,
∂µnµ(x) = 0. The energy-momentum tensor T µν(x) of the system also conserves, ∂µT µν(x) = 0.
Although these 4 equations are not enough to determine the time evolution of these quantities,
in some special physical situations they become sufficient since the total number of variables
drastically reduces. Suppose that, in the Landau frame (the energy flow rest frame), the



spatial part of T µν(x) becomes isotropic for any x. In addition, if there is no matter diffusion
in this frame and there exists a functional relation among the local quantities, ε, P and n,
as P = P (ε, n), then we obtain a set of closed dynamical equations for nµ(x) and T µν(x),
constituting the ideal hydrodynamics. As was mentioned, these conditions can be realized
simply by LTE so that usually the success of (almost) ideal hydrodynamic description of heavy-
ion collisions means the realization of LTE. However, as we will discuss here, LTE is a sufficient
but not a necessary condition for the hydrodynamic picture on EbE basis, especially for the
description of a limited set of observables.

Although hydrodynamic equation has a form of local classical field theory, its variables such
as n and ε are defined as averages in a certain finite volume which we refer to as fluid element.
In this sense, the assumption that EoS P = P (ε, n) should be satisfied strictly at a local point is
physically meaningless in a finite-size system. For the hydrodynamic description of relativistic
heavy-ion collisions, the locality means that size of the typical fluid element should be sufficiently
small compared to that of the whole system (i.e., at least less than half fm), but at the same
time it cannot be taken too much small, otherwise the number of degrees of freedom contained
in the fluid element would not be enough to define thermodynamical quantities. Similarly, the
time scale of the hydrodynamic motion should be much larger than the microscopic one so that
LTE can be attained, but it should be much smaller than the time-scale of the expansion of
the system, which is already very small due to the rapid expansion of the system. Therefore,
for an allowed size of fluid element for the description of heavy-ion collisions, there exist large
fluctuations and inhomogeneity in terms of the microscopic configurations, leading to a large
deviation from the thermodynamic limit necessary to define the EoS.

As an example, let us consider a classical microscopic system which contains a large number
of quickly moving point-like particles. Then, the density n∗

0
is a sum of the Dirac delta functions.

However, we usually do not require a very precise resolution both in space and in time to describe
the collective flow behaviors. Thus we introduce an averaged smooth density distribution
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a 4 dimensional smoothing kernel [4] W (x) = Uτ (t)×Wh (~x) . Typically U and W are given by
the Gaussian distributions with, respectively, width τ and h, which characterize the scales of the
time and space resolutions. Similarly, the smoothed spatial current vector j̃ (~x, t) can be defined,

satisfying the continuity equation, ∂ñ∗/∂t + ∇x · j̃ = 0. Using these current and density, the

four-current, j̃µ =
(

ñ∗, j̃
)

and the proper density, ñ =
√

j̃ν j̃ν can be composed. The smoothed

four-velocity field is then defined as ũµ = j̃µ/n.
On the other hand, the smoothed energy-momentum tensor T̃ µν can be introduced in

analogous way as the convolution of the original T µν using the same smoothing kernel. Such
an energy-momentum tensor again satisfies the continuity equation, ∂µT̃ µν = 0. From this
smoothed energy-momentum tensor, we can calculate the smoothed proper energy density as
ε̃ ≡ ũµũν T̃ µν . The energy density defined in this way is an average of the energy density observed
in the rest frame of the matter flow. The average is taken over all contributions within the range
of the coarse-graining scale in space-time. In the following, we take these smoothed quantities
as dynamical variables to represent this system [4].

When the above procedure is applied to one collision event which is characterized by a
microscopic state, then we can construct the corresponding hydrodynamic description. However,
it is obvious that there exist many different microscopic configurations which give the same
hydrodynamic response. Let us prepare the set of collision events described by microscopic
configurations which gives a specified four-current j̃µ at the initial time t0, and call this set Ω.
If we calculate ε̃ at a space-time point x for each event in Ω, the value of ε̃ is not the same in
general.

However, if the coarse-graining size is increased, the number of independent microscopic



configurations in Ω may become sufficiently large in a way that ε̃ and ñ distribute sharply
around their mean-values, ε̃ and ñ, respectively, as a consequence of the central limit theorem.
If this happens, since ε̃ and ñ are the averaged energy and matter densities belonging to the
same fluid element, it is possible that they are strongly correlated so that ε̃ can be expressed as
a function of ñ, ε̃ = ε̃ (ñ) (barotropic fluid).

Suppose that the fluctuations in ε̃ and j̃µ are not important in the way that the system
is characterized basically by the densities ñ and ε̃. In such a case, we expect that the most
promising dynamics will be determined by the optimization of the model action,

I = −
∫

d4x ε̃

(

1

γ
ñ∗

)

, (1)

where ñ∗ ≡ γñ denotes the mean matter density observed in the reference frame and γ is the
Lorentz factor. This variational procedure leads to the ideal hydrodynamics. In other words,
the hydrodynamic model can be considered as the optimized dynamics of the coarse-grained
system (of course only the largeness of coarse-graining is not a sufficient condition to realize
such situations). See Ref. [5] for details.

This is a mere single example to show that the collective behavior does not necessarily mean
LTE in an single event. In realistic situations, we further extend the ensemble Ω in a way that
Ω is a whole set of events which have the same final state observables, such as collective flow
parameters. Such Ω might be a huge statistical ensemble of many different events. That is, we
have to have in mind that the final state observables are still far from exclusive even for the
collective behaviors of the system to conclude that the realization of LTE is attained in a real
single event. For the effect of the fluctuations in ε̃ and j̃µ, see Sec. 4.

3. Necessity of Real Event by Event Analysis

As shown above, the hydrodynamic description in heavy-ion collisions reduces to a coarse-
grained dynamics obtained by the optimization of the model action (1) under the assumption
of existence of an effective EoS, ε̃ = ε̃ (ñ). Therefore, the success of the ideal hydrodynamic
modeling of relativistic heavy-ion collisions depends on the consistent choice of this EoS and
the model action. These two conditions will be satisfied for a broader range of microscopic
configurations than those required by the real “local thermal equilibrium” for each event.

On the other hand, the size of Ω depends on the coarse-graining scale and final state
observables. For larger Ω, the two conditions are more likely to be satisfied. We however
loose the better resolution in the space-time recognition for larger Ω. In fact, we cannot observe
inhomogeneities with smaller wavelength than the coarse-graining scale. This affects directly
the class of observables that the model can describe. Even though some observables might be
insensitive to inhomogeneities in each event. As an extreme example, we take the situation
where the coarse-graining size is larger than the system size and the total time evolution. Then
the ensemble Ω can be regarded as the statistical ensemble of the whole system itself, and the
resultant system reduces simply to the so-called fire-ball. The thermal model for particle ratio
can be considered in this category.

In general, the less the resolution is, the larger Ω becomes. Thus for some observables which
do not require a precise space-time resolution, the effective hydrodynamic description for the
statistical ensemble Ω will be sufficient for the understanding of the physics of these observables,
without implying LTE on EbE basis. As a matter of fact, the experimental observables are
usually averaged over collision events classified in terms of their initial configurations rather
loosely defined, such as centrality, event plane, etc. In other words, the present collective flow
data are still of inclusive nature. In order to claim that the true hydrodynamics with LTE
is valid, we need to have observables that reflect the genuine hydrodynamic profile in EbE
basis. For example, the remnant of a sharp shock wave propagation, if exists, would be a good



evidence and it also tells the possible limit size of coarse-graining for the collective flow. The
shock thickness should not be larger than the coarse-graining scale of the collective flow.

The key point is that when we apply the hydrodynamic modeling, we do not know a priori the
suitable coarse-graining scale in the real scenario. This puts a certain limitation in extracting
the meaningful information of the initial condition from the hydrodynamic analysis. For this
purpose, it is essential to find out the set of observables which carry the information on the
inhomogeneities of the initial conditions on EbE basis. The flow parameters {vn}, often called
”event-by-event” analysis, in the sense that correlations among different observables measured
for each event in coincidence, but there still exists a huge statistical ensemble which gives the
same observed correlation as we have discussed. For example, the cumulant method to determine
the flow parameters eliminates the information of event plane. In the recent paper, it is pointed
out that event plane may differ in low and high pT domain [4], according to the coarse-graining
scale. If it can be experimentally measured, it would furnish some information on coarse graining
scale in heavy-ion collisions.

4. Fluctuation of Fluid Variables and Stochastic Variational Method

Within the vision that hydrodynamic evolution is an effective dynamics for coarse-grained
variables of the energy-momentum tensor, each real collision event is an element of the statistical
ensemble Ω and does not obey a unique time evolution equation due to the difference in
the microscopic degrees of freedom to which our macroscopic hydrodynamic variables are
blind. When the fluctuation of events in Ω is large, they should be taken into account in
the determination of dynamics of coarse-grained hydrodynamic variables. As was discussed so
far, the variational approach is an optimized method for the formulation of the coarse-grained
dynamics. Then the variation procedure in Eq. (1) should be modified so as to include the
effect of the fluctuation which was ignored in Sec. 3. The stochastic variational method (SVM)
is known as an appropriate approach for such situations [6].

In order to formulate the variational approach involving stochastic processes, we have to
introduce two stochastic differential equations (SDE), one for the forward direction in time
(FSDE), and the other, backward in time (BSDE) which describes the time reversed process
of FSDE. These two SDEs are necessary to accommodate the fixed initial and final boundary
conditions in the variational procedure, but they cannot be completely independent. For further
discussion on this point, see [6]. Such stochastic processes are known as Bernstein process. For
this process, the two Fokker-Planck equations for FSDE and BSDE should be equivalent. This
leads to the consistency condition, u = ũ + 2ν∇ lnρ,where u and ũ are the velocity fields for
FSDE and BSDE, respectively. Here ρ is the particle density which is given by the solution of
the Fokker-Planck equation and ν is a parameter representing the intensity of the noise.

The purpose of SVM is to determine these velocity fields u and ũ from an action through the
variation principle introducing noises, starting from the classical (non-dissipative) Lagrangian.
For a non-relativistic fluid, the most natural form of the stochastic Lagrangian density is given by
[6] L = 1/2 ρm

[

(1/2 + α2)
{

(1/2 + α1)u
2 + (1/2− α1) ũ

2
}

+ (1/2 − α2) ũ · u
]

− ε, here α1 and
α2 is arbitrary constants and ρm is the mass density. The corresponding action is an average over
the whole SDE solutions, and the variation is taken with respect to these stochastic trajectories
to determine the unknown fields, u and ũ. The dynamical equation obtained from the stochastic
variation is found to be
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m. The pressure P is defined by

(ρm)2d(ε/ρm)/dρm. One can see easily that the second term on the left hand side corresponds



to the viscous term (containing the gradient of velocity field) and this equation is reduced to the
Navier-Stokes-Fourier equation when we set α2 = 0. That is, the fluctuation effects which were
ignored in Sec. 3 induces the effects of viscosity in accordance with the fluctuation-dissipation
theorem (more precisely, the variation of entropy should be taken into account to get the second
coefficient of viscosity). For other results of different values of α′s, see Ref. [6].

5. Concluding remarks

In this work, we addressed the physical meaning of coarse-graining scale and the hidden
statistical ensemble in EbE analysis in hydrodynamic approach to heavy-ion collisions. We
introduced explicitly the coarse-graining procedure for the hydrodynamic modeling together
with its variational formulation. In this picture, the collective flow patterns can be reproduced
without requiring the LTE in a strict sense for event by event. That is, the hydrodynamic
behavior observed in relativistic heavy-ion collisions does not necessarily imply the realization
of LTE for a one collisional event. Furthermore, we call attention that the validity of EoS does
not mean the thermal equilibrium as has already been pointed out before (see for example,
Ref. [7] and also the recent work on the dynamical isotropization of pressure in the Color
Glass Condensate scheme [8]). We further discussed possible signals for coarse-graining scale
and genuine hydrodynamic behaviors on EbE basis. For example, the remnant of a sharp
shock wave propagation would be a good observable which tells the possible coarse-graining size
of the collective flow. Another example is to determine the event plane for different transverse
momentum domain. Finally we showed that the coarse-graining is intimately related to the origin
of viscosity and this effect can be formulated in the variational method extending dynamical
variables to stochastic domain. In order to quantify the questions raised here, it will be useful
to perform the analysis of coarse-graining described in this work for a certain microscopic model
which gives complete dynamical evolution of the energy-momentum tensor, such as PHSD [9].
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