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Abstract. Experimental signals for a possible QCD critical point and first-order phase
transition are strongly influenced by the rapid nonequilibrium dynamics during a heavy-ion
collision. In order to estimate and understand these effects we study the cooling through the
phase transition within a nonequilibrium chiral fluid dynamics model. The order parameters for
the chiral and deconfinement transition are explicitly propagated, taking into account dissipation
and fluctuation stemming from the interaction with a quark-antiquark fluid. In studies of single
events, we demonstrate how the formation of domains in net-baryon density at the first-order
phase transition leads to a clear enhancement of higher flow harmonics. For the detection of
the critical point it is crucial that the relevant signal survives the rapid dynamics. We observe
critical slowing down and long-wavelength fluctuations in the vicinity of the critical point.

1. Introduction
Exploring the phase structure of strongly interacting matter is one of the primary goals of heavy-
ion physics. The implementation of quantum chromodynamics (QCD) on the lattice predicts a
crossover transition at small baryochemical potential µB [1] with a pseudo-critical temperature
in the range between 150− 170 MeV [2]. The concept of a critical point (CP) and a first-order
phase transition at large values of µB is mainly supported by mean-field effective models [3] and
functional methods such as Dyson-Schwinger equations [4] or renormalization group techniques
[5]. Experimentally, fluctuations are of crucial importance for the detection of any of these
transition scenarios. At the CP, a diverging correlation length in equilibrium would lead to
diverging event-by-event fluctuations of conserved quantities [6]. On the other hand, a different
type of fluctuation is expected at a dynamical nonequilibrium first-order phase transition, where
spinodal instabilities could foster spatial inhomogeneities within single events [7, 8]. We address
these issues within the nonequilibrium chiral fluid dynamics model trying to find hints for both
critical behavior and spinodal decomposition.
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Figure 1. Equilibrium values of the sigma
and Polyakov loop fields for a critical point
scenario with g = 3.52.
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Figure 2. Equilibrium values of the sigma
and Polyakov loop fields for a scenario with a
first-order phase transition with g = 4.7.

2. Coupling fluid dynamics to chiral fields and Polyakov loop
Starting from the Polyakov-Quark-Meson model [9], we obtain the dynamics of the sigma field,
the chiral order parameter, by adding damping and stochastic noise to the usual Euler-Lagrange
equation

∂µ∂
µσ + ησ(T )∂tσ +

∂Veff

∂σ
= ξσ . (1)

This can be explicitly derived using the two-particle irreducible effective action approach [10],
which gives a temperature-dependent damping coefficient ησ(T ) vanishing only around the CP,
and a dissipation-fluctuation relation. Here, Veff is the grand canonical potential

Veff = U(σ) + U(`) + Ωqq̄ . (2)

It is composed of the chiral potential U describing spontaneous breaking of chiral symmetry, the
effective Polyakov loop potential U and the mean-field quark-antiquark contribution Ωqq̄ from
integrating out the quark degrees of freedom in the path integral formulation of the partition
function.

A rigorous derivation of the equation of motion for the Polyakov loop is not possible. This
quantity is only defined in Euclidean time and we do not understand the real-time equivalent.
All we can do is make some reasonable phenomenological estimate. From the mean-field
approximation we would have ∂Veff/∂` = 0, which forces ` to be equal to its thermal expectation
value at all times. To gain an independent dynamical description we augmented the equation
of motion with damping and noise terms, giving [11]

η`∂t`+
∂Veff

∂`
= ξ` . (3)

Thereby, we found our results to be independent of the choice of η` for a wide range of
applications. We chose the value of η` = 5/fm. Both noise fields ξσ and ξ` are assumed to
be Gaussian and white.

The quark fluid is described by an ideal stress-energy tensor Tµνq = (e+p)uµuν−pgµν , where
pressure and energy density are determined via p = −Ωqq̄ and e = T∂p/∂T − p+ µ∂p/∂µ. The
coupling to the order parameter fields σ and ` is achieved through source terms Sνσ and Sν` ,

∂µT
µν
q = Sνσ + Sν` , (4)
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0 ≤ |k| ≤ 100MeV

Figure 3. Fluctuation intensity of the sigma
field for 0 ≤ |k| ≤ 100 MeV.
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100MeV ≤ |k| ≤ 200MeV

Figure 4. Fluctuation intensity of the sigma
field for 100 ≤ |k| ≤ 200 MeV.

which ensures conservation of the total energy of the coupled system [11, 12]. It is important to
note here, that the local pressure of the fluid depends on the local values of the fields, so we do
not use an equilibrium equation of state. Conservation of the total quark number is ensured by
the continuity equation ∂µn

µ = 0.

3. Enhancement of low-momentum modes at the critical point
We investigate the dynamics of the order parameter fields after a temperature quench. For this
purpose we put the system in a box of finite size with periodic boundary conditions. In this
setup, pressure gradients are negligibly small and the dynamics is dominated by the Langevin
dynamics of the fields. We restrict ourselves to the case of vanishing baryochemical potential
and vary the strength of the transition by changing the quark-meson coupling g. In principle
this quantity has to be chosen such that gσ in vacuum reproduces the constituent quark mass,
resulting in g ∼ 3.3 and a crossover chiral and deconfinement transition. For a value of g = 3.52
we obtain a CP and for larger values of g the transition is of first-order type. Figs. 1 and 2
illustrate this through the equilibrium values σeq and `eq as a function of temperature.

We let the system in the box relax in the vicinity of the respective transition temperature
for the case of a CP and a first-order phase transition. During the evolution we focus on the
behavior of sigma field fluctuations which we analyze through their intensity. This quantity is
given by a combination of creation and annihilation operators which in equilibrium resembles
the number of excited particles from the quantum field. It reads

dN

d3k
=

a†kak
(2π)32ωk

=
ω2
k|δσk|2 + |∂tσk|2

(2π)32ωk
, (5)

with the Fourier transformed field δσk and the time derivative ∂tσk. The corresponding energy of

the k-the mode is given by ωk =

√
m2
σ + ~k2. The intensities integrated over the low-momentum

ranges from 0 to 100 MeV and from 100 to 200 MeV are plotted in Figs. 3 and 4, respectively.
In both figures we can make out significant differences between the two types of transition: For
the CP, the field needs less time to reach the equilibrium value, nevertheless, fluctuations remain
strong here with a clear enhancement compared to the first-order phase transition towards the
end of the evolution. On the other hand, we find large fluctuations when the system undergoes
the first-order phase transition, induced by spinodal instabilities around the potential barrier
separating the two competing minima. After equilibration, fluctuations are significantly weaker
than near the CP.
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Figure 5. Event-averaged harmonic coefficients from the azimuthal net-baryon number
distribution. We find a strongly anisotropic expansion for at first-order transition, while small
coefficients indicate a homogeneous spherical shape at the critical point.

4. Anisotropic flow at large baryon densities
In order to study what happens during a heavy-ion collision, we consider a freely expanding
blob of hot and dense quark matter cooling through the first-order phase transition at large
µB. Here, we find that a metastable phase dynamically fragments into small droplets, leading to
inhomogeneities in the azimuthal baryon number distribution within single events [13]. Averaged
over many events, we find a clear enhancement of higher harmonics in comparison with an
evolution through the CP, cf. Fig. 5. Note here that we used spherical initial conditions instead
of a more realistic ellipsoidal shape to illustrate the mere influence of the phase transition.

In the future, we aim at investigating more realistic scenarios by introducing initial conditions
from transport models and a hadronic freeze-out. We expect that the enhancement of the
harmonic coefficients at the first-order phase transition leads to strongly enhanced flow.
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