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Abstract. We investigate the time evolution of higher order cumulants of bulk fluctuations
of conserved charges in the hadronic stage in relativistic heavy ion collisions. The dynamical
evolution of non-Gaussian fluctuations is modeled by the diffusion master equation. Using this
model we predict that the fourth-order cumulant of net-electric charge is suppressed compared
with the recently observed second-order one at ALICE for a reasonable parameter range.
Significance of the measurements of various cumulants as functions of rapidity window to probe
dynamical history of the hot medium created by heavy ion collisions is emphasized.

1. Introduction
Bulk fluctuations of conserved charges, especially higher order cumulants characterizing non-
Gaussianity, are believed to be promising experimental observables to reveal thermodynamic
properties of the hot medium created by relativistic heavy ion collisions [1, 2]. These observables
are experimentally measured by event-by-event analysis, and active analyses of cumulants have
been performed at RHIC [3] and LHC [4]; In particular, fourth-order cumulants are measured
with a good statistics at RHIC. Numerical analyses of higher order cumulants of conserved
charges in equilibrium have been also carried out in lattice QCD Monte Carlo simulations.

An important property of the conserved-charge fluctuations in heavy ion collisions which
has been clarified by the recent experimental results is that the experimentally-observed
fluctuations are not those of the equilibrated medium at some stage in the hadronic medium.
In fact, suppression of the net-electric charge fluctuation observed at ALICE and especially its
strong rapidity window dependence [4] clearly show that the fluctuation is not equilibrated
at LHC energy. Moreover, a comparison of the fluctuations observed at STAR with the
cumulants measured on the lattice [5] also indicates that the fluctuations observed at RHIC
are not consistent with the equilibrated values at chemical freezeout. These results show that
an appropriate description of the non-equilibrium nature of fluctuations owing to dynamical
evolution of the hot medium is inevitably needed to investigate their thermodynamic properties
using the fluctuation observables, especially those of conserved charges.

In the present study, we investigate the time evolution of higher order cumulants of conserved
charges in the hadronic stage using the diffusion master equation [6]. After hadronization,
the fluctuations approach the equilibrated distribution in the hadronic medium, which is
approximately given by the Skellam distribution [7]. Our approach can describe this feature of
the non-Gaussian fluctuations, while the time evolution of the average and Gaussian fluctuations
are consistent with the ones in the stochastic diffusion equation [8]. By analyzing the time
evolution of higher order cumulants in this model, we show that the dependence of the cumulants
of conserved charges on the size of rapidity window to count the particle number in experiments



show characteristic behaviors reflecting the dynamical history of the time evolution of the hot
medium. In particular, we predict that the fourth-order cumulants of conserved charges will be
suppressed compared with the second ones at LHC energy for a wide range of parameters.

2. Stochastic formalism to describe non-Gaussianity in diffusive systems
In relativistic heavy ion collisions with sufficiently large

√
sNN, the hot medium created at

mid-rapidity has an approximate boost invariance. In a sufficiently large space-time scale
where hydrodynamic equations at first order are applicable, the average of the net number
of a conserved charge per unit coordinate-space rapidity, n(η, τ), follows the diffusion equation

∂τn(η, τ) = D∂2
ηn(η, τ), (1)

with the coordinate-space rapidity η, proper time τ , and the diffusion constant D. Assuming
that the kinetic freezeout takes place at a certain proper time τfo, the experimentally-observed

conserved-charge number at mid-rapidity at RHIC and LHC is given by Q(τ) =
∫∆η/2
−∆η/2 dηn(η, τ)

at τ = τfo with the size of the rapidity window to count the particle number ∆η.
In order to describe fluctuations around the solution of Eq. (1), one may employ a stochastic

model, in which the time evolution of the deterministic part satisfies Eq. (1). A choice of such
stochastic models is the theory of hydrodynamic fluctuations [9], in which the hydrodynamic
equations are promoted to Langevin equations with stochastic terms representing fast random
forces. It is known that these stochastic equations well describe Gaussian fluctuations in fluids.
However, extension of this formalism to treat non-Gaussian fluctuations is nontrivial. In fact,
one can show that the stochastic force in the theory of hydrodynamic fluctuations for Markov
process is of Gaussian [6]. Using this property it is shown that all higher order cumulants of Q(τ)
vanish in equilibrium unless D(τ) is explicitly dependent on n. This property is not welcome to
describe non-Gaussianity in heavy ion collisions, because higher order cumulants are expected
to increase toward nonzero equilibrated values in the hadronic medium [1, 3, 4].

Figure 1. System described by the
diffusion master equation Eq. (2).

In the present study, instead of directly extending the theory of hydrodynamic fluctuations,
we investigate the time evolution of higher order cumulants starting from a microscopic model. In
this study, as such a model we consider a simple one-dimensional system composed of Brownian
particles. Instead of tracking the motion of each Brownian particle separately, however, we
represent the system as follows (See, Fig. 1) [6]. First, the coordinate η is divided into discrete
cells with an equal length a. Second, we consider a single species of particle for the moment, and
denote the number of particles in each cell, labeled by an integer m, as nm, and the probability
that each cell contains nm particles as P (n, τ) with n = (· · · , nm−1, nm, nm+1, · · ·). Finally, we
assume that each particle moves to adjacent cells with a probability γ per unit proper time. The
probability P (n, τ) then follows the differential equation

∂τP (n, τ) = γ
∑
m

[(nm + 1){P (n+ em − em+1, τ) + P (n+ em − em−1, τ)} − 2nmP (n, τ)], (2)

which is referred to as diffusion master equation, where em is the vector that all components
are zero except for the mth one, which takes unity. One can show that the average density and
Gaussian fluctuation of n(η, τ) in Eq. (2) in the continuum limit, a → 0, agree with those in the
stochastic diffusion equation [8] with D = γa2 [6].



3. Solution of diffusion master equation
Now, we solve the time evolution of cumulants for the stochastic process Eq. (2). In order to
simplify the problem, in the following we limit our attention to the time evolution in an infinitely
long system without boundaries. Since we are interested in the solution in the continuum limit,
a → 0, we represent the particle numbers nm by a function n(η, τ). After some algebra [6], one
finds that the cumulants of Q(τ) with the fixed initial condition n(η, 0) = M(η) are given by

〈(Q(τ))n〉c =
∫ ∞

−∞
dηM(η)H

(n)
X (η), (3)

with

H
(1)
X (z) = IX(z/∆η), H

(2)
X (z) = IX(z/∆η)− IX(z/∆η)2, (4)

H
(3)
X (z) = IX(z/∆η)− 3IX(z/∆η)2 + 2IX(z/∆η)3, (5)

H
(4)
X (z) = IX(z/∆η)− 7IX(z/∆η)2 + 12IX(z/∆η)3 − 6IX(z/∆η)4, (6)

and IX(z) =
∫ 1/2
−1/2 dx

∫
dq/(2π)e−X2q2eiq(x+z), where ∆η and τ dependences are encoded in the

dimensionless parameter X =
√
Dτ/∆η. We note that

√
2Dτ is the mean diffusion length of

the Brownian particles at τ .
In order to examine the time evolution of conserved charges in heavy ion collisions, one must

extend the above result to general initial conditions containing fluctuations. We also extend the
result to the system with two particle species with densities n1(η, τ) and n2(η, τ), and consider

cumulants of the difference, Q(net)(τ) =
∫∆η/2
−∆η/2 dη(n1(η, τ)− n2(η, τ)), in order to compare the

results with the cumulants of net charge numbers. In the following, we limit our attention to the
solution for the initial conditions which satisfies spatial uniformity and locality with vanishing
net-charge number. In this case, second- and fourth-order cumulants of Q(net)(τ) are given by

〈Q2
(net)〉c = ∆η[M(tot)]c(1− F

(2)
X ), (7)

〈Q4
(net)〉c = ∆η{3[M2

(tot)]c(F
(2)
X − 2F

(3)
X + F

(4)
X ) + [M(tot)]c(1− 7F

(2)
X + 12F

(3)
X − 6F

(4)
X )},(8)

with F
(n)
X =

∫∞
−∞ dz[IX(z)]n, and M(net),(tot)(η) = M1(η) ∓ M2(η), respectively. In Eq. (8),

[M2
(tot)]c is the fluctuation of the total number of the particles per unit rapidity at the initial

condition. This quantity is not constrained by the conservation laws and strongly depends on
the hadronization mechanism [6]. We thus treat this quantity as a parameter that characterizes
the hadronization mechanism. From Eqs. (7) and (8), one can check that the distribution of
Q(net) approaches a Skellam one with limτ→∞〈Q2n

(net)〉c = ∆η[M(tot)]c. The time evolution of the

Gaussian fluctuation, Eq. (7), is equivalent with the one in the stochastic diffusion equation [8].

4. Time evolution of cumulants and ∆η dependence
Now, let us consider the cumulants of conserved charges in relativistic heavy ion collisions. To
make the argument simple, we assume that a boost invariant system with local equilibration is
realized just above the critical temperature of the deconfinement transition. We further assume
that the fluctuations of conserved charges vanish at this time, reflecting the small fluctuations in
the deconfined phase [1] and the local charge conservations. Due to the diffusion in the hadronic
phase, the fluctuations keep on approaching the equilibrated values in the hadronic medium until
kinetic freezeout at τ = τfo. Provided that this diffusion process is well described by the diffusion
master equation, ∆η dependence of the cumulants of conserved charges at kinetic freezeout are
given by Eqs. (7) and (8) with τ = τfo.
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Figure 2. Second and fourth order
cumulant of Q(net) as a function of
1/X with the fixed initial condition.

In Fig. 2, we show the 1/X dependences of Eqs. (7) and (8). Since 1/X is proportional to
∆η with fixed τ , this result can directly be compared with the ∆η dependence of the cumulants
in experiments. The result for the fourth-order is shown with several values of the parameter
c = [M2

(tot)]c/[M(tot)]c, which is the quantity sensitive to hadronization mechanism [6].

In the figure, one finds that 〈Q4
(net)〉c is suppressed compared with 〈Q2

(net)〉c in the parameter

range c < 1.5, while the behavior of 〈Q4
(net)〉c depends sensitively on the value of c. This result

indicates that 〈(N (net)
Q )4〉c at ALICE, which has not been measured yet, will be suppressed

compared with the 〈(N (net)
Q )2〉c which has been already measured [4], while the statement is

altered for large c. The same conclusion is also anticipated for the relation between the baryon

number cumulants [10], 〈(N (net)
B )2〉c and 〈(N (net)

B )4〉c. Our results also indicate that experimental
measurements of not only the magnitudes of various cumulants at a fixed ∆η but also their ∆η
dependence enable us to explore various aspects of the time evolution of the hot medium and the
hadronization mechanism in the experiments. In particular, these analyses would enable us to
estimate the magnitude of the parameter c, which is sensitive to the hadronization mechanism.
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