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Abstract. Landau solution of hydrodynamics is generalized for the non-central high-energy
nuclear collisions. The multiparticle production after hydrodynamic expansion from the
transversely asymmetric initial state shows elliptic flow formation. Moreover, obtained solution
does reproduce the observed longitudinal scaling of the elliptic flow for the different collision
energies at LHC and RHIC. It will be argued, that the analyticity of the solution allows us to
to fit experimental data in order to obtain initial conditions.

1. Introduction
The question of particle multiplicity distribution in High-Energy Nuclear Collisions has a long-
lasting history. In 1950 Fermi suggests to apply thermodynamics to particle production in
high-energy collisions. In 1953 Landau improves the idea with the assumption, that system
strongly interacts and particles are produced after the ideal hydrodynamic expansion. And
now, this approximate and analytic solution of relativistic hydrodynamics works well not only for
multiplicity distribution at LHC and RHIC energies, but with some modifications, it reproduces
the experimentally observed longitudinal scaling of elliptic flow.

2. Solution of Ideal Hydrodynamics for Particle Production
The solution is inspired by the Landau hydrodynamic model of multi-particle production [1, 2]
and [3], where the hydrodynamic equations for the energy-momentum conservation,

∂µT
µν = 0, (1)

are solved by separating longitudinal and transverse expansions. It is realistic assumption, as the
longitudinal expansion is much faster than transverse and starts with much thinner longitudinal
profile. The equation of state of ideal relativistic gas, P = e/3, and the energy-momentum
tensor in usual form,

Tµν = (e+ P )uµuν − Pgµν , (2)

closes the solvable system of equations.



2.1. Longitudinal expansion
The equations of the hydrodynamic longitudinal expansion in 1+1 dimension, along z axis reads
as:

∂T 00

∂t
+
∂T 0z

∂z
= 0,

∂T 0z

∂t
+
∂T zz

∂z
= 0. (3)

Solution of the equations of hydrodynamics starts by transforming relativistic velocity field
components to rapidity terms, as: u0 = cosh y, uz = sinh y, and the final solution for energy
density, e(y+, y−), and rapidity, y(y+, y−), reads as [4]:

e(y+, y−) = e0 exp[−4/3(y+ + y− −
√
y+y−)], (4)

y(y+, y−) = (y+ − y−)/2, (5)

while z = t tanh y. The above solution of 1+1-dimensional relativistic hydrodynamics equation
is connected to the solution of transverse expansion, in order to obtain multiplicities of produced
particles for different rapidities.

2.2. Transverse expansion
The transverse expansion of hydrodynamic eq. 1 in polar coordinates reads as:

∂T 0r

∂t
+
∂T rr

∂r
= 0 . (6)

Inserting energy-momentum tensor expressions to the above equation and using ideal gas
equation of state, P = e/3, one gets:

4e(u0)2
∂vr
∂t

+ 4e(u0)2
∂v2r
∂r

+
∂e

∂r
= 0 . (7)

tFO = 2 cosh y

√
2aRφ

(1− f(Rφ))
, (8)

where new function, f(Rφ) = e(r = Rφ)/e(r = 0), is introduced as a fraction of energy density
at the edge of the system with respect to the energy density at the center. The transverse and
longitudinal solutions are matched at the time t = tFO, starting the freeze-out stage, where
particles stream freely to the detectors. Knowing, that dS = su0dz at a given time within
element dz and entropy density, s = ce3/4, we express entropy change over rapidity from the
energy density formula (4), as:

dN

dy
∝ dS

dy
= ce

3/4
0 exp[−(y+ + y− −

√
y+y−)]

tFO
cosh y

. (9)

The transformation back to the (t, z) coordinates is: y+ = ln((t + z)/∆), y− = ln((t − z)/∆),
while ∆ is the initial thickness of the system in the beam direction, z. Also, ∆ is the initial
condition after which equation of state assumed to be valid and evolution equations (3) are
applied. Inserting the solution for the FO time equation (8) into the entropy equation above
and assuming that the number of produced particles is directly proportional to the entropy,
dN ∝ dS, one can obtain the number of particles for different rapidities at a fixed angle φ. In
order to find particle distribution d2N/dydφ one needs to find f(Rφ) and ∆, what corresponds
to the initial conditions.



2.3. Initial conditions
In order to show the validity of the obtained solution, simple and transparent initial conditions
will be used. In this case the widely accepted and analytically simple Wounded Nucleon (WN)
model [5] will be used to parametrize initial conditions. It is based on the Woods-Saxon nuclear
density parametrization [6], as follows: ρA(r) = ρ0

1+exp(
r−RA

d
)
, which is continuous and can be

connected to the Landau equations straightforwardly. The main requirement for the initial
conditions and the new function f(Rφ) is that for the central collision case, b = 0, the result
must be equal to the original Landau one. The density of wounded nucleons in the transverse

Figure 1. Rapidity distribution of produced
particles in central collisions (full lines) and in
peripheral collisions with impact parameter
b = 7fm (dashed line) for LHC and RHIC
energies

Figure 2. Elliptic flow, v2, dependence
on the impact parameter, b, for different
rapidities.

plane and in polar coordinates, (r, φ), can be obtained by:

nWN (r, φ) = TA(r, φ)

[
1−

(
1− σTB(r, φ)

B

)B]
+ TB(r, φ)

[
1−

(
1− σTA(r, φ)

A

)A]
.

The thickness functions are expressed, in usual way: TA(r, φ) = TA(x − b/2, y) =
∫
dz ρA(r),

using Woods-Saxon parametrization with RA = 1.12A1/3 − 0.86A−1/3 [fm], d = 0.54 [fm] and
n0 = 0.17fm−3. Now assuming, that energy density is proportional to the Wounded Nucleon
density: e(r, φ; b) ∝ nWN (r, φ; b), the function f(Rφ) can be obtained. It is by definition, the
ratio of energy density at the edge of the system with energy density at the center, for the fixed
impact parameter b and reads as:

f(Rφ) =
nWN (Rφ, φ; b)−min(nWN (Rφ, φ; b))

nWN (0, 0; b)
. (10)

The radius of the system, Rφ, is dependent on the angle φ and is obtained from the geometry

on how two circles overlap, as: R2
φ +Rφb cosφ+ b2

4 −R
2
A = 0. The term min(nWN (Rφ, φ; b)) is

a minimal density at the edge of the system and is used in order to have the original Landau
solution for Rφ = RA, so that f(RA) = 0. In the case of Woods-Saxon, the density at the edge of
the nuclei at r = RA is not zero, so the minimal value is subtracted. Now the acceleration term in
(7) is the same in central collision and in Landau, but for peripheral collisions acceleration does
depend on the angle φ. Finally, to calculate the elliptic flow one should merge equations (8), (9)



Figure 3. Elliptic flow, v2, de-
pendence on the rapidity, shifted
by the beam rapidity, ybeam =
ln(
√
sNN/mN ), for: Pb-Pb at im-

pact parameter b = 6fm collisions at
LHC energy

√
sNN = 2.76TeV (full-

line), Au-Au at b = 6fm at
√
sNN =

200GeV (dashed-line) and at
√
sNN =

62.4GeV (dotted-line) reactions used
at RHIC. Data are from [7], [8] and
[9]

and the definition of the elliptic flow: v2(y) =

∫
dφ(dN/dφdy) cos (2φ)∫

dφ(dN/dφdy)
, with the initial energy density

gradient f(Rφ) and initial longitudinal thickness ∆(φ). For the peripheral collisions initial

thickness is expressed, as ∆(φ) = κφRA/γ, where κφ =
√
nWN (Rφ, φ; b)/max(nWN (Rφ, φ; b)).

The following means, that longitudinal expansion (3) starts with azimuthally asymmetric initial
thickness, which is wider, where initial nuclear density is higher. The term max(nWN (Rφ, φ; b))
is used to have no effect of the modification for central collision case, κφ(b = 0) = 1. Obtained
results are shown in figure (3) in comparison with LHC and RHIC experiments.

3. Concussions
Presented analytical solution for the non-central heavy ion collisions reproduces experimentally
observed elliptic flow formation and it’s longitudinal scaling. Moreover, using experimental data
of produced charged particles for different rapidities in Event-on-Event basis, d2N/dηdφ, it will
be possible to find the initial energy density gradient function in transverse plane, f(Rφ), and
the initial thickness, ∆(φ).
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