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Abstract.

The FASTSUM Collaboration has calculated several quantities relevant for QCD studies
at non-zero temperature using the lattice technique. We report here our results for the (i)
interquark potential in charmonium; (ii) bottomonium spectral functions; and (iii) electrical
conductivity. All results were obtained with 2+1 flavours of dynamical fermions on an
anisotropic lattice which allows greater resolution in the temporal direction.

1. Introduction

The Particle Data Book [1] is a repository of particle physics knowledge, and yet it contains no
entries on the deconfined phase of QCD. We present here some lattice calculations of phenomena
in the quark-gluon plasma (QGP) phase with the ultimate aim of addressing this omission.

The lattice approach is based on the non-perturbative study of correlation functions of
operators calculated in a background of glue and dynamical (sea) quarks using the imaginary
time (i.e. Euclidean) formulation1. For instance, to study the ηc system, correlators, C(τ), of
the operator J = cγ5c are determined (c is the charm quark field). Each state i which has the
same quantum numbers as J (and therefore can be excited by it) contributes a term ∼ e−Miτ

to C(τ), where Mi is the mass of state i. For large τ , only the ground state remains, and its
properties can be determined.

While the lattice technique has had many successes in calculating phenomenologically relevant
quantities at zero chemical potential, µ, particularly in the confined phase of QCD, it has a
significant limitation for µ > 0. This is the well-known “sign problem” which has haunted
efforts to extend our knowledge into the entire (T, µ) plane2.

1 For a general introduction to lattice gauge theory see [2], and non-zero temperature reviews, see [3, 4].
2 For reviews of the sign problem, see [5].



In this talk, I will discuss three lattice results obtained by the FASTSUM Collaboration
at µ = 0 and non-zero temperature, T , above and below the deconfining temperature, Tc, all
produced on our 2+1 flavour, anisotropic lattices. These topics are a calculation of the potential
in the charmonium system (Sec.2), bottomonium spectral functions (Sec.3), and a determination
of the electrical conductivity of QCD as a function of T (Sec.4).

This work uses lattice simulations with the parameters in Table 1 and a carefully crafted
action with reduced lattice artefacts [6]. Anisotropic rather than isotropic lattices provide a
distinct advantage due to the finer temporal resolution and correspondingly larger sampling of
the correlator, C(τ). This is particularly significant in the T > 0 case where the temporal extent
is limited to 0 ≤ τ ≤ 1/T . Our Tc value is obtained from the Polyakov Loop.

Ns 32 24 24 24 32 24 32 24 32 24 24 32
Nτ 48 40 36 32 32 28 28 24 24 20 16 16

T (MeV) 117 141 156 176 176 201 201 235 235 281 352 352
T/Tc 0.63 0.76 0.84 0.95 0.95 1.09 1.09 1.27 1.27 1.52 1.90 1.90

Table 1. Lattice parameters used where N(s)τ is the number of sites in the spatial (temporal)
direction. Our spatial and temporal lattice spacings are as = 0.1227(8) and aτ = 0.0351(2) fm.

2. Charmonium potential

The interquark potential in charmonium is of great interest to phenomenologists modelling the
QGP phase in heavy ion collisions. Knowledge of this potential aids our understanding of the
J/ψ system, and the extent to which states become unbound with increasing temperature.

Lattice calculations of the finite temperature interquark potential have, until recently, been
restricted to the static (i.e. infinitely heavy) quark limit [7]. On the other hand, the finite-
mass interquark potential has been calculated at T = 0 [8] using the method developed by
the HAL QCD collaboration for internucleon potentials [9]. This method first calculates the
wavefunction of the two-particle system, ψ(r), which is then used as input into the Schrödinger
equation, yielding the potential, V (r), as output.

In our case, we consider non-local operators of (charm) quark fields, J(x, r) = c(x)ΓU(x, x+
r)c(x + r), where Γ is an appropriately chosen Dirac (gamma) matrix, and U(x, x + r) is the
gauge connection between x and x+ r [10]. The correlation function of these operators is

C(r, τ) =
∑
x

〈J(x, r)J†(x,0)〉 =
∑
i

ψi(r)ψ
∗
i (0)

2Mi
e−Miτ , (1)

where the second sum is over the states i. Following [11], C(r, τ) satisfies the Schrödinger
equation which can then be used to extract the potential.

As usual, the potential can be decomposed into the central, VC(r), and the spin dependent,
VS(r), terms, VΓ(r) = VC(r)+s1 ·s2 VS(r), where s1,2 are the spins of the charm quarks. In Fig.1
(Left), we show the charmonium central potential, VC(r) thus obtained at various temperatures
above and below the deconfining temperature. We use Ns = 24 in this work. As can be seen,
there is a clear temperature dependence in our calculated potential which becomes less confining
as T increases. In Fig.1 (Right) VS(r), is plotted showing a repulsive core with a temperature
variation at large distances.

3. Bottomonium spectral functions

In this section we discuss our studies of bottomonium at T > 0. Recent results from CMS
show that the 1S and 2S/3S Υ states have different relative multiplicities in Pb-Pb compared
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Figure 1. (Left) The charmonium central potential, VC(r), showing the 1S and 2S masses for
the J/ψ system. (Right) The charmonium spin dependent potential, VS(r).

to p-p collisions at the LHC [12]. This result confirms the picture, originally proposed in the
charmonium system, in which the higher mass states in quarkonium are the first to become
unbound as the temperature increases beyond Tc [13].

We have performed lattice simulations of the bottomonium system using an O(v4) NRQCD
lattice action [14] to represent the b-quarks. This extends our earlier work [15]. NRQCD is an
approximation obtained from QCD as a velocity expansion in v/c, and is thus applicable for b-
quarks. The advantages of NRQCD over the (exact) relativistic quark formulation are two-fold.
There is no periodicity in time which complicates the correlation function: in the relativistic case,
backward movers effectively half the number of time points that carry independent information.
The lack of these thermal boundary effects means that the NRQCD quarks should be viewed as
test colour charges moving in a thermal bath of dynamical light quarks and gluons. Secondly,
the solution of the NRQCD propagator is an initial value problem which is much easier to solve
than the matrix inversion required in the relativistic case. Thus, for a given computer resource,
much higher statistics can be achieved in the NRQCD case.

The spectral function, ρ(ω), can be defined from the two-point correlation function, C(τ), of
bottomonium operators via

C(τ) =

∫
ρ(ω)K(τ, ω)dω, (2)

where in the NRQCD case the kernel is K(τ, ω) = exp(−ωτ). In principle, the spectral function
contains complete information on the states in the channel considered. For a stable particle
of mass M , ρ(ω) ∝ δ(ω −M). For a resonance, this δ-function broadens acquiring a non-zero
width, and if the state becomes unbound, the spectral feature disappears.

We have used the Maximum Entropy Method (MEM), a Bayesian technique, to de-convolve
eq.(2) to extract ρ(ω) [16]. The results for the S-wave (Υ) channel and P -wave (χb1) channels are
shown in Fig.2, all obtained with Ns = 24. There is a distinct temperature dependence in both
channels. While the Υ ground state (1S) peak is seen to decrease with T , it remains a distinct
(i.e. bound) feature up to T ≈ 1.90Tc. However, the excited state (2S) peak seems to disappear
for T ∼

> Tc. This agrees with the experimental result obtained by the CMS collaboration [12].
These results contrast with the χb1 case where the ground state (1P) appears to melt at T ≈ Tc,
see Fig.2 (Right).



9 10 11 12

ω  [GeV]

0

2

4

6

8

10

12

14

ρ(
ω

)/m
b2

0.76 T
c

0.84 T
c

0.95 T
c

1.09 T
c

1.27 T
c

1.52 T
c

1.90 T
c

Υ

9 10 11 12 13 14 15 16

ω  [GeV]

0

0.1

0.2

0.3

0.4

ρ(
ω

)/m
b4

χ
b1

Figure 2. The NRQCD Bottomonium S-wave (Left) and P -wave (Right) spectral functions.
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Figure 3. The (light-quark) electromagnetic
spectral function, ρem(ω), showing the
conductivity signal in the ω → 0 limit.
Cem = 5/9e2 for two light flavours.
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Figure 4. The conductivity, σ, as a function
of temperature. As well as the results from
our work, quenched (Nf = 0) [18, 19] and
dynamical results [20] are also shown.

4. Electrical conductivity

We now discuss our calculation of the electrical conductivity, σ [17]. Transport coefficients such
as σ are of special relevance for understanding the bulk properties of the fireball in relativistic
heavy-ion collision experiments. Typically, they can be determined from the zero energy limit of
the appropriate spectral function, i.e. limω→0 ρ/ω. In the case of the conductivity, the correlator
to consider is that of the electromagnetic current of quark flavour f ,

Cem(τ) =
∑
i

∫
d3x〈jemi (τ,x)jemi (0,x)†〉 with jemi (x) = e

∑
f

qfj
f
i (x), (3)

where e is the electron’s charge, qf = 2
3 ,−

1
3 , is the fractional charge and jfi ∼ ψ

f
γiψ

f the

number density current of quark field ψf . In our case [17] we use the conserved lattice vector
current (i.e. ∂µj

f
µ = 0) which means we do not have to renormalise our results. We again use

MEM to invert the correlator to extract the corresponding ρem(ω), see Eq(2), but this time with
the relativistic kernel K(τ, ω) = cosh[ω(τ − 1/2T )]/ sinh[ω/2T ].



The conductivity is obtained via the Kubo relation,

σ

T
=

1

6T
lim
ω→0

ρem(ω)

ω
. (4)

Fig.3 shows ρem(ω) around ω ≈ 0 for three temperatures spanning Tc. There is a clear
non-zero intercept at ω = 0 for T ∼

> Tc, indicating a conductivity signal. In Fig.4, we present
our σ values for all the T values we studied. The dimensionless ratio σ/T increases across the
transition temperature. Results from three other published works are also shown [18, 19, 20].

5. Conclusion

In this talk, I have summarised our collaboration’s lattice calculations showing that the
charmonium potential becomes less binding with higher T , that the Υ(1S) state survives above
Tc but the Υ(2S) and χb1 don’t, and that the conductivity increases with T across the transition.

References
[1] Beringer J et al. [Particle Data Group Collaboration], 2012 Phys. Rev. D 86 010001.
[2] Montvay I, Münster G “Quantum Fields on a Lattice”, Cambridge Monographs on Mathematical Physics.
[3] Levkova L, 2011 PoS LATTICE 2011 011 (Preprint arXiv:1201.1516 [hep-lat]).
[4] Lombardo M P, 2012 PoS LATTICE 2012 016 (Preprint arXiv:1301.7324 [hep-lat]).
[5] de Forcrand P, 2009 PoS LAT 2009 010 (Preprint arXiv:1005.0539 [hep-lat]). Aarts G, 2012 PoS LATTICE

2012 017 (Preprint arXiv:1302.3028 [hep-lat]).
[6] Edwards R G, Joo B and Lin H W, 2008 Phys. Rev. D 78 054501 (Preprint arXiv:0803.3960 [hep-lat]).
[7] Kaczmarek O, Karsch F, Zantow F and Petreczky P, 2004 Phys. Rev. D 70 074505 [Erratum - 2005 Phys.

Rev. D 72 059903], Maezawa Y et al. [WHOT-QCD Collaboration], 2007 Phys. Rev. D 75 074501 (Preprint
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