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Abstract. We present an extension of relativistic single-particle distribution function for
weakly interacting particles at local thermodynamical equilibrium including spin degrees of
freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case,
that at local thermodynamical equilibrium particles acquire a net polarization proportional to
the vorticity of the inverse temperature four-vector field. The obtained formula for polarization
also implies that a steady gradient of temperature entails a polarization orthogonal to particle
momentum. The single-particle distribution function in momentum space extends the so-called
Cooper-Frye formula to particles with spin 1/2 and allows to predict their polarization, and
particularly of Lambda hyperons, in relativistic heavy ion collisions at the freeze-out.

1. Introduction
The single-particle distribution function is the main quantity in kinetic theory and its form
at local thermodynamical equilibrium for relativistic, weakly interacting, gases is well known.
For spinless particles, it is simply the Bose-Einstein distribution with x-dependent values of
temperature and chemical potential (which can be defined as Bose-Jüttner distribution):

f(x, p) =
1

eβ(x)·p−ξ(x) − 1
(1)

where β = 1
T0
u is the inverse temperature four-vector,T0 being the proper temperature measured

by a comoving thermometer with the four-velocity u and ξ = µ0/T0 is the ratio between the
proper chemical potential µ0 and T0. The above formula has, as straightforward consequence, the
invariant momentum spectrum at local thermodynamical equilibrium, the so-called Cooper-Frye
formula [1]:

ε
dN

d3p
=

∫
Σ

dΣµp
µf(x, p) (2)

where Σ is a space-like 3-dimensional hypersurface. This formula is widespreadly used in e.g.
relativistic heavy ion collisions to calculate hadronic spectra at the end of the hydrodynamical
stage.

The distribution (1), multiplied by a degeneracy factor (2S + 1), is also used for particles
with spin (for fermions replacing the −1 with +1 in the denominator) being understood that f



means the total particle density in phase space, i.e. summed over polarization states. However,
in general, particles may not evenly populate the various polarization states and one may then
wonder what is the appropriate extension of (1) in this case. Indeed, in this work, we will
answer this question and provide a generalization of (1) and (2) including the spin degrees of
freedom. We will argue that a non-even population of the polarization states arises when the
inverse temperature four-vector field has a non-vanishing antisymmetric part of its gradient
and calculate the polarization vector for massive spin 1/2 particles. Phenomenologically, this
extension may have several interesting applications. For instance, it would make possible to
predict the value of particle polarization in relativistic heavy ion collisions [2, 3, 4, 5, 6, 7] at the
hydrodynamical decoupling, provided that local thermodynamical equilibrium applies to spin
degrees of freedom as well. The detailed analysis and calculation can be found in [8].

2. Single particle distribution function with spin
At global thermodynamical equilibrium with finite angular momentum density the density
operator is well known [9, 10] and reads:

ρ̂ =
1

Z
exp[−Ĥ/T + µQ̂/T + ω · Ĵ/T ]PV (3)

where ω is a constant fixed vector whose physical meaning is that of an angular velocity and T
is the global temperature, that is the temperature of a thermostat in contact with the system
or that measured by a thermometer at rest with respect to the external inertial observer. The
PV operator is the projector operator onto localized states [11] which is needed in order to
avoid the relativistic singularity at r = c/ω. For this distribution, it has been shown the single-
particle distribution function of an ideal relativistic Boltzmann gas of particles with spin S can
be obtained from just statistical mechanics arguments [11]:

f(x, p)rs = eξ e−β·p
1

2

(
DS([p]−1Rω̂(iω/T )[p]) +DS([p]†Rω̂(iω/T )[p]†−1)

)
rs

(4)

where β = 1
T (1,ω×x) is the inverse temperature four-vector; λ is the fugacity; [p] is the SL(2,C)

matrix corresponding to the Lorentz transformation taking the time unit vector t̂ into p̂ (so-
called standard transformation); DS stands for the (S, 0) irreducible representation of SL(2,C);
R is the SL(2,C) corresponding of a rotation, which is calculated for an imaginary angle iω/T .

The extension to Fermi-Dirac statistics of this formula is not a straightforward calculation
like in the non-rotating case, hence we make an ansatz about this extension which reproduces
the usual Fermi-Dirac distribution in the non-rotating case and, at the same time, has the (4)
for S = 1/2 case as its Boltzmann limit.

f(x, p)rs =
1

2m
ūr(p)

(
exp[β · p− ξ] exp

[
−1

2
$µνΣµν

]
+ I

)−1

us(p)

f̄(x, p)rs = − 1

2m
v̄s(p)

(
exp[β · p+ ξ] exp

[
1

2
$µνΣµν

]
+ I

)−1

vr(p) (5)

whereas $ is the covariant form for the angular velocity:

$µν = (ω/T )(δ1
µδ

2
ν − δ1

νδ
2
µ) =

√
β2Ωµν (6)

and Ωµν turns out to be the acceleration tensor of the Frenet-Serret tetrad of the β field lines
[11]. The above second equality holds for a rigid velocity field only [11, 12].

The expression of the single particle distribution function for a fermion field, at local
thermodynamical equilibrium, in principle, should be calculated using the density operator for



local themodynamical equilibrium [13]. At the lowest order of approximation, however, we know
that the single particle distribution function must yield the same formal expression at global
thermodynamical equilibrium with space-time dependent intensive thermodynamics functions,
that is space-time dependent β, $ and ξ. Hence, the single-particle distribution functions (4)
for S = 1/2 case become:

f(x, p)rs =
1

2m
ūr(p)

(
exp[β(x) · p− ξ(x)] exp

[
−1

2
$(x)µνΣµν

]
+ I

)−1

us(p)

f̄(x, p)rs = − 1

2m
v̄s(p)

(
exp[β(x) · p+ ξ(x)] exp

[
1

2
$(x)µνΣµν

]
+ I

)−1

vr(p) (7)

where β is the inverse temperature four-vector, ξ is the ratio between comoving chemical
potential and temperature, Σµν = (i/4)[γµ, γν ] are the generators of Lorentz transformations
of 4-components spinors, u(p) and v(p) are the spinors solutions of the free Dirac equation.
While the general physical meaning of the fields β and ξ can be easily inferred from the
equilibrium limit (β is the local inverse temperature four-vector field and ξ the ratio between

the comoving chemical potential µ0(x) and the local comoving temperature T0(x) = 1/
√
β2),

$µν(x)’s expression cannot be uniquely obtained from the equilibrium distribution. The reason
of this ambiguity is that at rotational equilibrium, the tensor $ is:

$µν =
√
β2Ωµν (8)

where Ωµν is the acceleration tensor of the Frenet-Serret tetrad of the β field lines [11] and [12]:

$µν = −1

2
(∂µβν − ∂νβµ) (9)

that is the relativistic generalization of angular velocity of fluid. In a nonequilibrium situation,
the right hand sides of eqs. (9) and (8) differ and it is not obvious which one applies, perhaps
neither. However, if the system is not too far from equilibrium, $ cannot be too distant from
the right hand side of (9). Particularly, the difference must be of the 2nd order in the gradients
of the β field (for instance: (∂ · β)(∂µβν − ∂νβµ) or second order gradients like ∂µ∂νβ

λ) which
vanish at equilibrium [12]. For the lowest-order formulation of relativistic hydrodynamics, the
expression (9) is sufficient to determine the expression of spin-related quantities.

3. Polarization
The main consequence of the distribution functions (7) is that spin 1/2 particles get polarized
at local thermodynamical equilibrium. The polarization four-vector, for a particle with mass m
and four-momentum p is defined as:

Πµ = −1

2
εµρστS

ρσ p
τ

m
(10)

where Sρσ is the mean value of the total angular momentum operator of the single particle.
However the Levi-Civita tensor makes the orbital part of the total angular momentum irrelevant,
so we are left with the spin-tensor density in the phase space S0,ρτ (x, p) contribution only:

〈Πµ(x, p)〉 = −1

2

1∑
r frr

εµρστ
dS0,ρσ(x, p)

d3p

pτ

m
(11)

The canonical spin tensor can be computed using (7):

Sλ,µν(x) =
1

2

∫
d3p

2ε

∑
rs

(
frs(x, p)ūs(p){γλ,Σµν}ur(p)

)
−
(
f̄rs(x, p)v̄r(p){γλ,Σµν}vs(p)

)
(12)



Not far from equilibrium, using the (9), expanding for small value of $µν , the polarization vector
becomes:

〈Πµ(x, p)〉 ' 1

16
εµρστ (1− nF ) (∂ρβσ − ∂σβρ) p

τ

m
=

1

8
εµρστ (1− nF )∂ρβσ

pτ

m
(13)

where nF = 1/(exp(β(x) · p− ξ(x)) + 1) is the Fermi-Dirac distribution function.
It may be of interest, e.g. for relativistic heavy ion collisions, to calculate the space-integrated

mean polarization vector. For a three-dimensional spacelike hypersurface Σ, one has:

〈Πµ(p)〉 ≡

∫
dΣλ

pλ

ε
(−1/2)εµρστ

dS0,ρσ

d3p

pτ

m∫
dΣλ

pλ

ε

∑
r

frr(x, p)

' 1

8
εµρστ

pτ

m

∫
dΣλ p

λ nF (1− nF )∂ρβσ∫
dΣλ p

λnF

(14)

For antiparticles, one gets the same formula, with n̄F = 1/(exp(β(x) ·p+ ξ(x)) + 1) replacing
nF . Here an important comment is in order: the fact that local thermodynamical equilibrium
implies the same orientation for the polarization vector of particles and antiparticles (unlike
e.g. in the electromagnetic field) is a general outcome and does not depend on the introduced
approximations. It stems from the fact that the spin tensor, as well as the angular momentum,
is a charge-conjugation even operator, or, more simply stated, that thermal and mechanical
effects do not ”see” the internal charge of the particles.

This formula (14) may be used to predict the polarization of particles, in particular Λ
hyperons, produced at the freeze-out (primary particles) in a relativistic heavy-ion collision,
after the hydrodynamical evolution. This polarization is proportional to the thermal vorticity
(9) at freeze-out hypersurface and could give an observable contribution [15]. The observation
of this effect would be a confirmation of the achievement the local thermodynamical equilibrium
also to spin degrees of freedom and would also indicate that vorticity and circulation may persist
up to freeze-out.
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