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Abstract. The full space-time evolution of gluons, light and heavy quarks in ultra-relativistic
heavy-ion collisions is studied within the partonic transport model Boltzmann Approach

to MultiParton Scatterings (BAMPS). We discuss for light and heavy quarks the elastic
and radiative energy loss with a running coupling. Radiative processes, in particular, are
implemented through an improved version of the Gunion-Bertsch matrix element, which is
derived from comparisons to the exact result, explicitly taking finite heavy quark masses into
account. Subsequently, we present results with and without radiative processes and compare
them to experimental data at LHC. A focus is put on the nuclear modification factor of charged
hadrons and D mesons.

1. Introduction

In ultra-relativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at BNL
[1, 2] and the Large Hadron Collider (LHC) at CERN [3] a hot and dense medium is produced.
Since quarks and gluons form the relevant degrees of freedom, it is commonly named quark
gluon plasma (QGP). Interesting properties are, for instance, a collective behavior like a nearly
perfect fluid or the quenching of highly energetic particles.

In particular charm and bottom quarks provide a unique way to gain insight in the properties
of this matter. Since they are heavy, their production time is at a very early stage of the heavy-
ion collision when enough energy is available [4]. Therefore, they traverse the medium right from
the beginning for a rather long time, interact with other medium particles, participate in the
flow, and lose energy. The mechanism responsible for their strong interaction with the medium
is actively debated, most recently, for instance, in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

In this paper we study the nuclear modification factor and elliptic flow of heavy flavor particles
at LHC within the partonic transport model BAMPS. Furthermore, we calculate the elastic and
radiative energy loss of light and heavy quarks in a static thermal medium. To this end, we
also compare the D meson nuclear modification factor to that of charged hadrons obtained with
elastic and radiative processes.



2. Partonic transport model BAMPS

BAMPS (Boltzmann Approach to MultiParton Scatterings) [16, 17] is a partonic transport model
that describes the full space-time evolution of the QGP by solving the Boltzmann equation,
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for on-shell partons and pQCD interactions. For light partons, all possible 2 → 2 and 2 ↔ 3
processes are included. On the heavy flavor sector, all relevant elastic and radiative collisions
of heavy quarks with other medium constituents have been implemented in BAMPS, while the
running of the coupling is explicitly taken into account for elastic as well as radiative light
and heavy flavor processes. The divergent t channel of heavy flavor scatterings is regularized
with a screening mass µ that is determined by matching elastic energy loss calculations with
leading order pQCD cross sections to results from hard thermal loop (HTL) calculations. The
comparison of both results shows that the screening mass µ is smaller than the usually employed
Debye mass mD, more precisely, µ2 = κm2

D
with κ = 1/(2e) ≈ 0.2 [18, 19, 20].

For radiative processes we generalize the recently calculated improvement of the Gunion

and Bertsch (GB) cross section [21] to finite masses [22]. The result is consistent with the
calculation of Ref. [23]. The dead cone suppression [24, 25] of small angle radiation due to the
finite heavy quark mass is explicitly present in our result.

3. Results and comparison with data

Quantitative BAMPS comparisons [26, 20, 27, 7] show that elastic processes with a running
coupling and the improved screening procedure contribute significantly to the energy loss of
heavy quarks. However, they alone cannot reproduce the data of the nuclear modification factor
or the elliptic flow of any heavy flavor particle species. Before radiative heavy quark processes
have been implemented in BAMPS, we mimicked their influence by effectively increasing the
elastic cross section by a factor K = 3.5, which is tuned to the elliptic flow data of heavy flavor
electrons at RHIC [7]. Simultaneously, the nuclear modification factor of heavy flavor electrons
at RHIC can be described with the same parameter. Having fixed this parameter to the RHIC
data, we find a good agreement with the experimentally measured nuclear modification factor
and elliptic flow of all heavy flavor particles at LHC (see Fig. 1). Most of these calculations
were predictions [7]. As a note, only (Peterson) fragmentation but no coalescence is considered,
which might influence the exact value of K.

However, the need of the phenomenological K factor is rather unsatisfying from the theory
perspective. Therefore, the question arises whether radiative processes can account for the
missing contribution parameterized by the K factor. To this end, we present in the following
BAMPS calculations including radiative processes for both light and heavy particles. Since the
improved screening prescription is only derived for heavy quarks, we employ in the following the
standard Debye screening (κ = 1) to treat light and heavy partons consistently.

In the left panel of Fig. 2 the elastic and radiative energy loss of light and heavy quarks in
a static thermal medium is depicted. The radiative energy loss is on the same order or only
slightly larger than the the elastic energy loss for all quark masses. Although the mass hierarchy
is visible for the elastic energy loss, the radiative energy loss of all flavors is of the same size. The
reason lies in the implementation of the Landau-Pomeranchuk-Migdal (LPM) effect producing
a second dead cone at small emission angles that overshadows the dead cone due to the heavy
quark mass. This similar energy loss of light and charm quarks is indeed part of the explanation
why the measured nuclear modification factors of charged hadrons and D mesons in heavy-ion
collision have the same values. Furthermore, mass effects in the fragmentation of gluons and
light quarks to charged hadrons and charm quarks toD mesons lead to a very similar suppression
of charged hadrons and D mesons in BAMPS, as is depicted in the right panel of Fig. 2.
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Figure 1. Elliptic flow v2 (left) and nuclear modification factor RAA (right) of various heavy
flavor particles at LHC together with data [28, 29, 30, 31, 32, 33]. Only binary heavy flavor
processes are considered and multiplied with K = 3.5.
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Figure 2. Left: Elastic and radiative energy loss per unit length of a light quark (M = 0GeV),
a charm quark (M = 1.3GeV), and a bottom quark (M = 4.6GeV) traversing a static thermal
medium with temperature T = 0.4GeV. The curves are calculated with running coupling and
Debye mass prefactor κ = 1. Right: Nuclear modification factor RAA of charged hadrons and
D mesons at LHC in comparison to data [34, 32]. The LPM parameter X is set to 1 and 0.3.

Although the shape of the nuclear modification factor as a function of the transverse
momentum is nicely reproduced by BAMPS (see X = 1 curve in the right panel of Fig. 2),
the overall suppression is underestimated. The reason for this discrepancy is probably the
effective implementation of the LPM effect in BAMPS, which discards all possible interference
effects and only allows independent scatterings. If we introduce a factor X < 1 that modifies
the LPM cut-off and effectively allows more radiative interactions, a good agreement with the
experimental data of charged hadrons and D mesons is found for X = 0.3. Although the exact
value of X is a free parameter, we expect that a more sophisticated implementation of the LPM
effect would effectively correspond to an X < 1 and might make the need of the X parameter
obsolete. We will study this in more detail and also compare to other theoretical calculations in
a forthcoming study.



4. Summary

We presented heavy flavor calculations with the parton cascade BAMPS. Allowing only elastic
interactions with a running coupling and an improved Debye screening, the experimental data
of all heavy flavor particles at LHC can be described if the binary cross sections are multiplied
with K = 3.5, which is tuned to the elliptic flow data at RHIC. Furthermore, we show first
results including also radiative processes. To this end, the elastic and radiative energy loss of
light and heavy quarks in a static medium is shown. Furthermore, we compare BAMPS results
to the experimentally measured nuclear modification factor of charged hadrons and D mesons
at LHC. It would be interesting for a future project to study the impact of radiative processes
on heavy flavor correlations [35] or heavy flavor tagged jets [36].
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