

S.Puddu

Supervisors: M. Silari, F. Murtas

20/10/2012

Nice to meet you

- Name: Silvia Puddu
- Born in Cagliari-Sardinia (Italy)
- Study: Università degli Sutdi di Cagliari
 - Bachelor thesis: Development of a portable system For the test on MWPC at ALICE esperiment
 - Master Thesis: Development of a diagnostic system for burning plasma (INFN-LNF/ENEA)
 - Poster APS 2009 X-ray detector for burning plasmas S. Puddu , F. Bombarda,
 G. Pizzicaroli, F. Murtas
 - ✓ Nuclear Instruments and Methods, doi :10.16/j.nima.2009.06.101(2009)
 - Design of a GEM-based detector for the measurement of fast neutrons. B.
 Esposito, F. Murtas, R.Villari, M. Angelone, D. Marocco, P. Pillon and S. Puddu

20/10/2012

Silvia Puddu - First ARDENT Workshop Vienna 2012

ESR 3

- Study of applications of triple GEM detector
 - $\circ~$ Beam monitoring for CERF and CNAO ~
 - Beam monitoring for spallation source
 - Neutron dosimetry
 - \circ Radioactive waste

ESR 3

- Study of applications of triple GEM detector
 - \circ $\,$ Beam monitoring for mip CERF and CNAO $\,$
 - Beam monitoring for spallation sources
 - Neutron dosimetry
 - \circ Radioactive waste

C. Guerrero Sanchez, The neutron beam and the associated physics program of the CERN n_Tof facility, ATS seminar 20/10/2012 Silvia Puddu - First ARDENT Workshop Vienna 2012

- Particle conversion, charge amplification and signal induction zones are physically separated
- Time resolution depends on geometry and gas: 9.7 ns for Ar-CO2 (70-30)
- Spatial resolution depends on geometry (up to 200 μ m), however is limited by readout
- Dynamic range: from 1 to 10⁸ particles/cm² s
- Effective gain is given by the formula: $G_{eff} \propto \sum V_{G}$
- F. Sauli NIM A386 531

M. Alfonsi et al., The triple-Gem detector for the M1R1 muon station at LHCb, N14-182, 2005 IEEE-NSS

Silvia Puddu IEEE NSS Conference 2012

- Particle conversion, charge amplification and signal induction zones are physically separated
- Time resolution depends on geometry and gas: 9.7 ns for Ar-CO2 (70-30)
- Spatial resolution depends on geometry (up to 200 μ m), however is limited by readout
- Dynamic range: from 1 to 10⁸ particles/cm² s
- Effective gain is given by the formula: $G_{eff} \propto \sum V_{G_i}$
- F. Sauli NIM A386 531

M. Alfonsi et al., The triple-Gem detector for the M1R1 muon station at LHCb, N14-182, 2005 IEEE-NSS

How detect fast neutrons

- Neutron converter 60 μ m PE + 40 μ m AI
- Gas mixture **Ar-CO**₂ **70%-30%**
- Measurements near to the beam dump
- Low γ sensitivity: HV at 870V \rightarrow gain ~ 300

Neutrons interact with CH₂, and, due to elastic scattering processes, protons are emitted and enter in the gas volume generating a detectable signal.

Aluminium thickness ensures the directional capability, stopping protons that are emitted at a too wide angle.

Low Sensitivity to Photons

HV scan with n_TOF and Cs137 with a gate of 1 second

- > Delay 2000 ns, HV 870 V, gate 10 ms
- > Two different intensity beams arrive to the facility

20/10/2012

The FPGA can detect neutrons vs a delay in time allowing to make a time (i.e. Neutron energy) scan that allows the efficiency vs energy to be measured (uncertainty \sim 0.1 \div 1%, \sim 20% at 10 MeV).

20/10/2012