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1895 
Discovery of X rays 

Wilhelm C. Röntgen   

1897  

“Discovery” of the  
electron 

J.J. Thompson 

1897 
First treatment of 
tissue with X rays 
Leopold Freund 
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The beginnings of modern physics and of medical physics 



M. Silari – 1st ARDENT Workshop – Vienna, 20-23 November 2012 

Henri Becquerel    
(1852-1908) 

1896 

Discovery of natural 

radioactivity 

  Marie Curie     Pierre Curie 
(1867 – 1934)  (1859 – 1906) 

1898 

Discovery of polonium 
and radium 

Thesis of Mme. Curie – 1904 

α, β, γ  in magnetic field 

Hundred years ago 

The beginnings of modern physics and of medical physics 
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• 1911: first practical application 
of a radioisotope (as radiotracer) 
by G. de Hevesy, a young 
Hungarian student working with 
naturally radioactive materials in 
Manchester 
 

• 1924: de Hevesy, who had become 
a physician, used radioactive 
isotopes of lead as tracers in bone 
studies 
 

First practical application of a radioisotope 
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James Chadwick 

(1891 – 1974) 

1932 

Discovery of the neutron 

Cyclotron + neutrons = first attempt of 
radiation therapy with fast neutrons  at 
LBL (R. Stone and J. Lawrence, 1938) 
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The beginnings of modern physics and of medical physics 
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Directly ionizing radiation:  
• fast charged particles (e.g., electrons, protons, alpha 

particles), which deliver their energy to matter directly, 
through many small Coulomb-force interactions along the 
particle’s track 

 
Indirectly ionizing radiation:  
• X- or γ-rays photons or neutrons (i.e., uncharged particles), 

which first transfer their energy to charged particles in the 
matter through which they pass in a relatively few large 
interactions, or cause nuclear reactions 

• The resulting fast charged particles then in turn deliver the 
energy in matter 
 

The deposition of energy in matter by indirectly ionizing 
radiation is a two-step process 

 photon    electron 
 neutron    proton or recoiling nuclei 

Directly and indirectly ionizing radiation 
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Why is radiation dosimetry important? 

Unique effects of interaction of ionizing radiation with matter 
  
• Biological systems (humans in particular) are particularly 

susceptible to damage by ionizing radiation 
• The expenditure of a trivial amount of energy (~4 J/kg or Gy) to 

the whole body is likely to cause death 
• Even if this amount of energy can only raise the gross 

temperature by about 0.001 °C 
• This is because of the ability of ionizing radiation to impart their 

energy to individual atoms and molecules 
• The resulting high local concentration of absorbed energy can kill 

a cell either directly or through the formation of highly reactive 
chemical species such as free radicals (atom or compound in 
which there is an unpaired electron, such as H or CH3) in the 
water medium that constitutes the bulk of the biological material 

Main aim of dosimetry = measurement of the absorbed dose (energy/mass) 
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 delta rays 

Ionization event (formation 
of water radicals) Light damage - 

reparable 

Clustered damage - 
irreparable 

Water radicals 
attack the DNA 

The mean diffusion distance of OH 
radicals before they react is only 2-3 nm 

OH• 

e- 

Primary particle track 

Courtesy R. Schulte 
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DNA damage 
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Radiobiological effectiveness (RBE) 
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P 

• How many rays (i.e. photons or particles) will strike a point 
P in radiation field? 

• The answer is zero, since a point has no cross-sectional 
area with which the rays can collide 

• So: how can we describe the radiation field at P? 

The random nature of radiation 

 Associate some nonzero volume to the point P 

10 

 Simplest volume is a sphere centered at P 
(it presents the same cross-sectional area 
to rays incident from all directions) 

 How large should this imaginary sphere be? 
 It depends on whether the physical quantities we wish to 

define w.r.t. the radiation field are: 
 Stochastic 
 Non-stochastic  
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Stochastic quantity 

• Its values occur randomly and cannot be predicted. 
However, the probability of any particular value is 
determined by a probability distribution 

• It is defined for finite (i.e. non-infinitesimal) domains 
only. Its values vary discontinuously in space and 
time, and it is meaningless to speak of a gradient or 
rate of change 

• In principle, its values can each be measured with an 
arbitrarily small error 

• The expectation value Ne of a stochastic quantity is 
the mean 𝑁� of its measured values N as the number 
n of observations approaches ∞: 

 
  𝑁�→  𝑁𝑒 as 𝑛 →  ∞ 
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• For given conditions its value can, in principle, be 
predicted by calculations 

• It is, in general, a “point function” defined for 
infinitesimal volumes; hence it is a continuous and 
differentiable function of space and time, and one 
may speak of its spatial gradient and time rate of 
change 

• Its value is equal to, or based upon, the 
expectation value of a related stochastic quantity, if 
one exists. Although non-stochastic quantities in 
general need not be related to stochastic quantities, 
they are so related in the context of ionizing radiation 
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Non-stochastic quantity 
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• The volume of the imaginary sphere 
surrounding P may be small but must be 
finite if dealing with stochastic quantities 

• This volume may be infinitesimal, dV, in 
reference to non-stochastic quantities 

• Likewise the great-circle area da and 
contained mass dm, as well as the 
irradiation time dt may be expressed as 
infinitesimal with non-stochastic quantities 

• Most common and useful quantities for describing radiation fields and 
their interaction with matter are non-stochastic 

• Stochastic quantities are mostly involved with microdosimetry (the 
determination of energy spent in a small but finite volume)  next 
year workshop at the Politecnico of Milano, October 2013 

• Microdosimetry is of particular interest in relation to biological cell 
damage  T. Waker’s lecture 

13 

Stochastic and non-stochastic quantities 
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• In general a “constant” radiation field is random w.r.t. how many rays 
or particles arrive at a given point per unit area and time interval 

• The number of rays or particles observed (counted by a detector) in 
repetitions of the measurement follows a Poisson distribution, which 
can be approximated by a Gaussian for large number of events 

• Standard deviation σ of a single random measurement N relative to 𝑁𝑒: 

𝜎 =  𝑁𝑒 ≅ 𝑁� 

𝑁𝑒 = expectation value of the number of rays detected per measurement 

Percent standard deviation S: 

S =  100𝜎
𝑁𝑒

 = 100
𝑁𝑒

 ≅  100
𝑁�

  

A single measurement N has 68.3% chance of lying within ±σ of Ne, 
95.5% chance of lying within ±2σ of Ne and 99.7% chance within ±3σ 

(Remember that 𝑁�  𝑁𝑒 as 𝑛  ∞) 
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Counting statistics 
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• Quantities describing the radiation field (e.g., fluence) 

• Quantities describing the medium with which the 
radiation field interacts (e.g., stopping power) 

• Dosimetric quantity =  
   = quantity describing the field  x  constant of the medium 
 
 

Radiation fields can be described by a set of 
non-stochastic quantities 
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Radiation dosimetry 

In radiation dosimetry we have: 
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Φ =
𝑑𝑁𝑒
𝑑𝑑

 

𝑁𝑒 = expectation value of the number of rays or particles striking 
a finite sphere surrounding point P during a time interval 
from a starting time t0 to a later time t 

The sphere around P is reduced to an infinitesimal with great-
circle area da 

( m-2  or  cm-2) 

FLUENCE at a point P 
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Fluence 
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FLUX DENSITY OR FLUENCE RATE at a point P 

𝜑 =
𝑑Φ
𝑑𝑑

=
𝑑2𝑁𝑒
𝑑𝑑𝑑𝑑

 ( m-2 s-1  or  cm-2 s-1) 

𝑑Φ is the increment of fluence during the infinitesimal time 
interval dt at time t 

Φ may be defined for all values of t through the interval from t0 
(for which Φ = 0) to t = tmax (for which Φ = Φmax). Then at 
some time t within the interval t0  t: 
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Flux density or fluence rate 
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The fluence at P for the time interval t0  t1 

Φ(𝑑0, 𝑑1) = � 𝜑 𝑑 𝑑𝑑
𝑡1

𝑡0
 

For a time-independent radiation field, 𝜑 𝑑  = constant  and  

Φ(𝑑0, 𝑑1) = φ ∙ 𝑑1 − 𝑑0 = 𝜑 Δ𝑑 

It is important to note that: 

• φ and Φ express the sum of rays or particles incident 
from all directions, and irrespective of their quantum or 
kinetic energies  basic information 

• a radiation field is often composed of various components 
(e.g., photons, neutrons, charged particles), which are – 
as far as possible – measured separately, as their 
interaction with matter are fundamentally different 

18 

Fluence and fluence rate 
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The energy fluence Ψ sums the energy of all individual rays or particles 

Ψ =
𝑑𝑅
𝑑𝑑

 

R = expectation value of the total energy (exclusive of rest-mass energy) 
carried by all the Ne rays striking a finite sphere surrounding point P 
during a time interval from t0 to t 

The sphere around P is reduced to an infinitesimal with great-circle area da 

(J m-2  or  erg cm-2) 

R = E Ne 
 

Ψ =
𝑑(𝐸𝑁𝑒)
𝑑𝑑

= 𝐸Φ 

1 eV = 1.602 x 10-19 J 
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Energy fluence 

For the special case where only a single energy E of rays is present: 
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𝜓 =
𝑑Ψ
𝑑𝑑 =

𝑑
𝑑𝑑

𝑑𝑅
𝑑𝑑  

Ψ may be defined for all values of t through the interval from 
t0 (for which Ψ=0) to t = tmax (for which Ψ = Ψmax). Then at 
some time t within the interval t0  t: 

ENERGY FLUX DENSITY OR ENERGY FLUENCE RATE at a point P 

𝑑Ψ = increment of energy fluence during the infinitesimal 
time interval dt at time t 

(J m-2 s-1  or  erg cm-2 s-1) 

20 

Energy flux density or energy fluence rate 
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Ψ(𝑑0, 𝑑1) = � 𝜓 𝑑 𝑑𝑑
𝑡1

𝑡0
 

and for constant 𝜓 𝑑   

Ψ(𝑑0, 𝑑1) = 𝜓 ∙ 𝑑1 − 𝑑0 = 𝜓 Δ𝑑 

Similarly to what written above for the fluence rate: 

For monoenergetic rays  of energy E (for which Ψ = 𝐸Φ) the 
energy flux density 𝜓 may be related to the flux density 𝜑 by: 

𝜓 =
𝑑Ψ
𝑑𝑑

= 𝐸
𝑑Φ 
𝑑𝑑

= 𝐸𝜑 
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Energy fluence and energy fluence rate 
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Differential distributions versus energy and angle of incidence 

Most radiation interactions are dependent upon the energy of the 
ray as well as its type, and the sensitivity of radiation detectors 
typically depends on the direction of incidence of the rays striking it 
 
The radiation field must usually be described in terms of its energy 
and angular distributions 

In principle one could measure the 
fluence rate at any time t and point P as 
a function of kinetic energy or quantum 
energy E and of the polar angles of 
incidence θ and β, to obtain the 
differential fluence rate: 
 
𝜑′(θ, β, E) (m-2 s-1 sr-1 eV-1) 

(According to the energy range, one uses keV-1 or MeV-1 instead of eV-1) 
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Number of rays per unit time having 
energies between E and E + dE which 
pass through the element of solid angle 
dΩ at the given angles θ and β before 
striking the small sphere centered at P, 
per unit great-circle area of the sphere: 
 
𝜑′(θ, β, E) dΩ dE  (m-2 s-1  or cm-2 s-1) 

Integrating over all angles and energies, 
one obtains the flux density 𝜑: 

𝜑=∫ ∫ ∫ 𝜑′(θ, β, E) sinθ dθ dβ dE𝐸𝐸𝐸𝐸
𝐸=0

2π
β=0

π
θ=0  (m-2 s-1  or cm-2 s-1) 

Similar expressions are valid for the energy fluence rate, fluence 
and energy fluence  
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Differential distributions versus energy and angle of incidence 
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• Simpler and more useful differential distributions of fluence, fluence 
rate, energy fluence and energy fluence rate are those which are 
functions of only one of the variables θ, β or E 

• When E is the chosen variable, the resulting differential distribution 
is called the energy spectrum of the quantity 

• For example: 

Energy spectrum of the fluence rate summed over all directions, 𝜑′(E): 

𝜑′(𝐸)=∫ ∫ 𝜑′(θ, β, E) sinθ dθ dβ2π
β=0

π
θ=0  (m-2 s-1 keV-1  or  cm-2 s-1 keV-1) 

and integrating over all energies of the rays gives of course 

𝜑 = � 𝜑′ 𝐸 𝑑𝐸
𝐸𝑚𝑚𝑚

0
 

24 

Energy spectra 
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Energy spectra 

𝝋(𝑬) 

E E’ 

𝝋′(𝑬′) 

0 

𝜑 = � 𝜑′ 𝐸 𝑑𝐸
𝐸𝑚𝑚𝑚

0
 

𝜑(𝐸1,𝐸2) = � 𝜑′ 𝐸 𝑑𝐸
𝐸2

𝐸1
 

𝝋′(𝑬′) 

0 E1 E2 E’ 

𝝋(𝑬𝟏,𝑬𝟐) 
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Flat spectrum of photon fluence rate φ′ E  versus photon energy E  

Corresponding spectrum of energy fluence rate 𝜓’(E) 

𝜓’(E) = E 𝜑′ 𝐸   

𝜓 = � 𝜓′ 𝐸 𝑑𝐸
𝐸𝑚𝑚𝑚

𝐸=0
= � 𝐸𝜑′ 𝐸 𝑑𝐸

𝐸𝑚𝑚𝑚

𝐸=0
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Energy spectra 

Example 
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𝜑′(𝜃)=∫ ∫ 𝜑′(θ, β, E) sinθ dβ dE𝐸𝐸𝐸𝐸
𝐸=0

2π
β=0  

The component of the fluence rate 
consisting of the particles of all energies 
arriving at P through the annulus lying 
between the two polar angles θ1 and θ2 is: 

𝜑(𝜃1,𝜃2) = � 𝜑′ 𝜃 𝑑𝜃
𝜃2

𝜃1
 

If the radiation field is symmetrical w.r.t. the vertical axis z, it can 
be described in terms of the differential distribution of e.g. the 
fluence rate as a function of polar angle θ 

If 𝜃1 = 0 𝑑𝑛𝑑 𝜃2 =  π   →    𝜑 𝜃1,𝜃2 = 𝜑 

𝜑′ 𝜃  is expressed e.g. in m-2 s-1 radian-1 

27 

Angular distributions 
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Differential distribution of fluence rate per unit solid angle, for 
particles of all energies: 

𝜑′(𝜃,𝛽) = � 𝜑′ 𝜃,𝛽,𝐸 𝑑𝐸
𝐸𝑚𝑚𝑚

𝐸=0
 (m-2 s-1 sr-1) 

and integrating over all directions: 

𝜑 =∫ ∫ 𝜑′(θ, β) sinθ dθ dβ2π
β=0

π
θ=0  

For a field that is symmetrical about the z-axis, 
𝜑′(θ,β) is independent of β, and integrating the 
previous expression over all β–values: 

𝜑 = 2π∫ 𝜑′(θ, β) sinθ dθπ
θ=0  

28 

Angular distributions 
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PLANAR FLUENCE: the number of particles crossing a fixed plane in 
either direction (=summed by scalar addition) per unit area of the plane 

Φ𝑝 =  
𝑑𝑁𝑒
𝑑𝑑 cos 𝜃 

θ = angle of incidence of rays or particles on surface da 

If the angular distribution of the rays or particles is isotropic:  

cos 𝜃= 1/2 Φ𝑝 =  
1
2
𝑑𝑁𝑒
𝑑𝑑 =  

1
2Φ 𝜓𝑝 =

1
2𝜓 

If the radiation field is unidirectional: 

Φ𝑝 =  
𝑑𝑁𝑒
𝑑𝑑 cos 𝜃 

29 

Planar fluence 

P da 

P da 



M. Silari – 1st ARDENT Workshop – Vienna, 20-23 November 2012 30 

Planar fluence 

Particles 
scattered 
through the 
same angle θ 

Spherical and flat detectors of equal cross-sectional areas 

No of scattered particles 
striking spherical 
detector = (1/cos θ) x 
no of particles striking 
flat detector  

Same fluence 
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In radiation dosimetry three non-stochastic quantities 
describe the interaction of a radiation field with matter: 
 
• the kerma K, describing the first step in energy 

dissipation by indirectly ionizing radiation = energy 
transfer to charged particles 

• the absorbed dose D, describing the energy imparted 
to matter by all kinds of ionizing radiations, but 
delivered by the charged particles 

• the exposure X, which describes x- and γ-fields in 
terms of their ability to ionize air 

• A related quantity is the mean energy expended per 
ion par production in a gas, 𝑾 

31 

Interaction of ionizing radiation with matter 
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• Uncharged ionizing radiation lose their energy in 
relatively few large interactions, whereas charged 
particles typically undergo many small collisions, 
losing their kinetic energy gradually 

• An uncharged particle has no limiting range in 
matter, beyond which it cannot go 

• Charge particles encounter such a range limit as 
they run out of kinetic energy 

• For comparable energies, uncharged particles 
penetrate much farther through matter, on the 
average, than charged particles, although this 
difference gradually decreases at energies above 
1 MeV 

Interaction of ionizing radiation with matter 
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Total coefficients for attenuation, energy transfer and energy absorption 

Total mass attenuation coefficient for γ-ray interactions (neglecting photonuclear reactions): 

photoelectric effect 
Compton effect 

Rayleigh scattering 

𝜇
𝜌

=
𝜏
𝜌

+
𝜎
𝜌

+
𝑘
𝜌

+
𝜎𝑅
𝜌

 

pair production 

(cm2 g-1  or  m2 kg-1) 

33 

𝜇
𝜌

=
1
𝜌𝑁

𝑑𝑁
𝑑𝑑

 mass attenuation coefficient 

σ = cross section 
NA = Avogadro’s constant (6.022·1023 mol-1) 
A = atomic weight 

𝜇
𝜌

= 𝜎
𝑁𝐴
𝐴
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𝜇𝑒𝑒
𝜌

=
𝜇𝑡𝑡
𝜌

(1 − 𝑔) 

Mass energy-transfer coefficient 

Mass energy-absorption coefficient 

average fraction of secondary electron energy lost 
in radiative interactions  (bremsstrahlung and β+ 
annihilation) 
For low Z and low hν, g    0 

𝜇𝑡𝑡
𝜌

=
𝜏𝑡𝑡
𝜌

+
𝜎𝑡𝑡
𝜌

+
𝑘𝑡𝑡
𝜌
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𝜇𝑡𝑡
𝜌

=
1

𝜌𝐸𝑁
𝑑𝜀𝑡𝑡
𝑑𝑑

 = fraction of energy of incident 
particles transferred to kinetic 
energy of secondary particles 

𝑑𝜀𝑡𝑡
𝐸𝑁

 

For photons: 

Total coefficients for attenuation, energy transfer and energy absorption 
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Example: mass attenuation coefficient for soft tissue (Z = 7) 

35 

Total coefficients for attenuation, energy transfer and energy absorption 
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Exponential attenuation of uncharged ionizing radiation (γ and neutrons)  

𝑑𝑁 = −𝜇𝑁𝑑𝑑 

𝑑𝑁
𝑁

= −𝜇𝑑𝑑 

�
𝑑𝑁
𝑁

= −� 𝜇𝑑𝑑
𝐿

𝑙=0

𝑁𝐿

𝑁=𝑁0
 

𝑑𝑛𝑁𝐿 − 𝑑𝑛𝑁0 = 𝑑𝑛
𝑁𝐿
𝑁0

= −𝜇𝜇 

𝑁𝐿
𝑁0

= 𝑒−𝜇𝐿 

µ = linear attenuation coefficient 
 (narrow beam) (cm-1 or m-1) 

1/µ = mean free path = average 
distance a single particle travels 
in a medium before interacting 

A distance of 3/µ reduces the beam 
intensity to 5%, 5/µ to <1% 

𝜇𝑑𝑑 = probability of interaction in 
an infinitesimal thickness 𝑑𝑑 

𝑁𝐿
𝑁0

= 𝑒− 𝜇1+𝜇2+𝜇3+⋯ 𝐿 

36 



M. Silari – 1st ARDENT Workshop – Vienna, 20-23 November 2012 37 

Stopping power and LET 

𝑆 =
𝑑𝐸
𝑑𝑑

 
𝑆
𝜚

=
𝑑𝐸
𝜚𝑑𝑑

 

𝑆
𝜚

=
𝑑𝐸
𝜚𝑑𝑑 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑒

+
𝑑𝐸
𝜚𝑑𝑑 𝑡𝐸𝑟𝑐𝐸𝑡𝑐𝑟𝑒

 

𝜇Δ =
𝑑𝐸
𝑑𝑑 Δ

 

dE = energy lost by the particle in path-length 𝑑𝑑 

dE  = energy locally imparted to the medium in collision events 
∆  = cut-off on energy of δ-rays 
The expression “locally” can be more or less restrictive 
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In broad-beam geometry, the effective attenuation coefficient µ’ > µ 

38 

Narrow- and broad-beam attenuation 

Strictly speaking, exponential attenuation is only observed for a 
monoenergetic beam of identical uncharged particles that are 
absorbed without producing scattered secondary radiation 
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Two methods to achieve narrow-beam attenuation: 
• Discrimination against all scattered and secondary particles that 

reach the detector 
(on the basis of particle energy, penetrating ability, direction, etc) 

• Narrow-beam geometry, which prevents any scattered or 
secondary particle from reaching the detector 

39 

Narrow-beam geometry 
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𝐵 =
𝑄𝑄𝑑𝑛𝑑𝑄𝑑𝑄 𝑑𝑄𝑒 𝑑𝑡 𝑝𝑝𝑄𝑝𝑑𝑝𝑄 + 𝑠𝑠𝑑𝑑𝑑𝑒𝑝𝑒𝑑 𝑑𝑛𝑑 𝑠𝑒𝑠𝑡𝑛𝑑𝑑𝑝𝑄 𝑝𝑑𝑑𝑄𝑑𝑑𝑄𝑡𝑛

𝑄𝑄𝑑𝑛𝑑𝑄𝑑𝑄 𝑑𝑄𝑒 𝑑𝑡 𝑝𝑝𝑄𝑝𝑑𝑝𝑄 𝑑𝑑𝑡𝑛𝑒
 

For narrow-beam geometry  B = 1 
For broad-beam geometry B > 1 
 
B is a function of radiation type and energy, attenuation medium 
and depth, geometry and measured quantity (e.g. energy fluence, 
kerma, dose) 

Ψ𝐿
Ψ0

= 𝐵𝑒−𝜇𝐿 

For example, for energy fluence Ψ: 

Ψ0 = unattenuated primary energy fluence 
Ψ𝐿 = total energy fluence at the detector behind 

a medium thickness L 
𝜇    = narrow-beam attenuation coefficient 
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The build-up factor 
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𝐼𝐼 𝜇 = 0     𝐵 = 𝐵0 ≡
Ψ𝐿
Ψ0

= 1 

No attenuation between source and detector 

phantom 

L = 0 

for most broad-beam geometries, 
except when detector on phantom surface 

Here Ψ𝐿 > Ψ0 and 𝐵0 > 1 
𝐵0 is called backscatter factor 
For 60Co photons on a water phantom  𝐵0 = 1.06 for tissue dose 
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The build-up factor 



M. Silari – 1st ARDENT Workshop – Vienna, 20-23 November 2012 

𝜀𝑡𝑡 =  𝑅𝑐𝑒 𝑢 - 𝑅𝑐𝑢𝑡 𝑄
𝑒𝑐𝑒𝑡 + ∑𝑄 

where: 

𝑅𝑐𝑒 𝑢      =  radiant energy of uncharged particles entering the volume V 
  
𝑅𝑐𝑢𝑡 𝑄

𝑒𝑐𝑒𝑡=  radiant energy of uncharged particles leaving V, except that 
 which originated from radioactive losses of kinetic energy by 
 charged particles while in V 
 
∑𝑄          = net energy derived from rest mass in V (m E positive, E m 
 negative) 

The energy transferred is a stochastic quantity defined as: 

The radiant energy is the energy of particles (except rest energy) 
emitted, transferred or received 

The energy transferred is just the kinetic energy received by 
charged particles in V (regardless of where or how they in turn 
spend that energy)  
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Energy transferred 
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Kerma (Kinetic Energy Released to Matter) 

Relevant only for indirectly ionizing radiation (photons and neutrons) 

𝐾 =  
𝑑 𝜀𝑡𝑡 𝑒

𝑑𝑝
≡  
𝑑𝜀𝑡𝑡
𝑑𝑝

 

𝜀𝑡𝑡 𝑒 = expectation value of the energy transferred in the finite 
 volume V (the sum of the initial kinetic energies of all 
 charged  particles produced by the indirectly ionizing 
 particles in V) 
  
𝑑 𝜀𝑡𝑡 𝑒 = expectation value for the infinitesimal volume dv at point P 
 
dm = mass of dv 

(Gy)       (1 Gy = 1 J/kg = 100 rad) 

The average value of K in a volume V of mass m is 𝜀𝑡𝑡 𝑒 /m 
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For monoenergetic photons, the kerma is related to the energy fluence by: 

K =  Ψ ⋅
𝜇𝑡𝑡
𝜌 𝐸,𝑍

 

𝜇𝑡𝑡 is the linear energy-transfer coefficient (m-1 or cm-1) and 𝜇𝑡𝑡 /𝜌 is the 
mass energy-transfer coefficient (function of the photon energy E and 
atomic number Z of the medium) 

For a spectrum of photons: 

𝐾 = � Ψ′ 𝐸 ⋅
𝜇𝑡𝑡
𝜌 𝐸,𝑍

𝑑𝐸
𝐸𝑚𝑚𝑚

𝐸=0
 

Ψ′ 𝐸 =  differential distribution of photon energy fluence 
𝜇𝑡𝑡 /𝜌  are numerical values tabulated for selected photon energies and 
materials 

(Gy)  
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Relation of kerma to energy fluence for photons 
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Average value of 𝜇𝑡𝑡 / 𝜌 for the spectrum Ψ′ 𝐸 :  

�̅�𝑡𝑡
𝜌 Ψ′ 𝐸 ,𝑍

=
𝐾
Ψ

=
∫ Ψ′ 𝐸 ⋅ 𝜇𝑡𝑡

𝜌 𝐸,𝑍
𝑑𝐸𝐸

∫ Ψ′ 𝐸𝐸 𝑑𝐸
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Relation of kerma to energy fluence for photons 
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Neutron fields are usually described in terms of flux density (or 
fluence) instead of energy flux density (or energy fluence) 
 
Kerma factor (Fn)E,Z: 

𝐹𝑒 𝐸,𝑍 =
𝜇𝑡𝑡
𝜌 𝐸,𝑍

⋅ 𝐸 

and: 

K = Φ ⋅ 𝐹𝑒 𝐸,𝑍 

For neutrons with energy spectrum Φ′ 𝐸  [cm-2 MeV-1] of particle fluence: 

𝐾 = � Φ′ 𝐸 ⋅ 𝐹𝑒 𝐸,𝑍𝑑𝐸
𝐸𝑚𝑚𝑚

𝐸=0
 (Gy) 

(Gy cm2) 

(Gy) 

𝐹𝑒 𝐸,𝑍 are numerical values tabulated for selected neutron energies and 
materials 
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Relation of kerma to fluence for neutrons 
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Average value of Fn for a neutron spectrum Φ′ 𝐸 :  

𝐹𝑒 Φ′ 𝐸 ,𝑍 =
𝐾
Φ =

∫ Φ′(𝐸) ⋅ 𝐹𝑒 𝐸,𝑍 𝑑𝐸𝐸

∫ Φ′ 𝐸𝐸 𝑑𝐸
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Kerma factors are used to convert dose or kerma measured in a 

tissue-equivalent material to absorbed dose or kerma in tissue 

⇒ the correction to be applied is the ratio of the kerma factors 

Relation of kerma to fluence for neutrons 
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For photons, the kerma consists of energy transferred to 
electrons and positrons per unit mass of medium 
 
K  = Kc + Kr 
 
Kc =  collision kerma = energy spent by the electrons in 

collisions (ionization and excitation in or near the electron 
track) 

Kr = radiative kerma = energy spent by the electrons in 
radiative-type interactions or by positrons through in-flight 
annihilation 

For neutrons, the resulting charged particles are protons 
and heavier recoiling nuclei: 
 
Kr << Kc     K = Kc 
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Components of kerma 
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𝜀𝑡𝑡𝑒 =  𝑅𝑐𝑒 𝑢 − 𝑅𝑐𝑢𝑡 𝑄
𝑒𝑐𝑒𝑡 − 𝑅′𝑢+ ∑𝑄 =  𝜀𝑡𝑡  − 𝑅′𝑢 

The net energy transferred is a stochastic quantity defined 
for a volume V as: 

𝑅′𝑢 = radiant energy emitted as radiative losses by the 
charged particles which originated in the volume V, 
regardless of where the radiative loss event occur 

𝜀𝑡𝑡 and K include energy that goes to radiative losses 

𝜀𝑡𝑡𝑒 and Kc do not include such losses 
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Net energy transferred 
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𝐾𝑠 =  
𝑑𝜀𝑡𝑡𝑒

𝑑𝑝
 

= expectation value of the net energy transferred to charged 
particles per unit mass at the point of interest, excluding both the 
radiative-loss energy and the energy passed from one charged 
particle to another. 
 
Average value of collision kerma throughout a volume of mass m: 

𝐾𝑠 =  
𝜖𝑡𝑡𝑛 𝑒

𝑝
 

For monoenergetic photons, Kc is related to the energy fluence 
Ψ via the mass energy-absorption coefficient (𝜇𝑒𝑒 /𝜌)𝐸, 𝑍

 : 

𝐾𝑠 =  Ψ ⋅
𝜇𝑒𝑒
𝜌 𝐸,𝑍
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Collision kerma Kc 

K =  Ψ ⋅
𝜇𝑡𝑡
𝜌 𝐸,𝑍

 (similarly to  ) 
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For a low-Z medium and small photon energy E (small radiative losses): 

(𝜇𝑒𝑒 /𝜌)𝐸 , 𝑍
 ≈ (𝜇𝑡𝑡  /𝜌)𝐸 , 𝑍

 

Kc ≈ K  

Percentage by which (𝜇𝑒𝑒 /𝜌)𝐸, 𝑍
 is less than (𝜇𝑡𝑡 /𝜌)𝐸, 𝑍
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Collision kerma Kc 

And similar as seen above for an energy spectrum Ψ′(E) 

𝐾𝑠 = � Ψ′ 𝐸 ⋅
𝜇𝑒𝑒
𝜌 𝐸,𝑍

𝑑𝐸
𝐸𝑚𝑚𝑚

𝐸=0
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Kerma rate at point P and time t 

�̇� =
𝑑𝐾
𝑑𝑑 =

𝑑
𝑑𝑑

𝑑𝜀𝑡𝑡
𝑑𝑝  (Gy s-1  or  Gy h-1) 

Integrated kerma between times t0 and t1: 

𝐾 𝑑0, 𝑑1 = � �̇� 𝑑  𝑑𝑑
𝑡1

𝑡0
 

and for constant kerma rate: 

𝐾 𝑑0, 𝑑1 = �̇� 𝑑1 − 𝑑2  
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Kerma rate 
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𝜀 =  𝑅𝑐𝑒 𝑢 − 𝑅𝑐𝑢𝑡 𝑄 + 𝑅𝑐𝑒 𝑐 − 𝑅𝑐𝑢𝑡 𝑠 + ∑𝑄 

where: 

𝑅𝑐𝑒 𝑢  = radiant energy of uncharged particles entering the volume V 
  
𝑅𝑐𝑢𝑡 𝑄 = radiant energy of all uncharged radiation leaving V 

 
𝑅𝑐𝑒 𝑐   = radiant energy of the charged particles entering V 

 
𝑅𝑐𝑢𝑡 𝑠  = radiant energy of the charged particles leaving V 

 
∑𝑄      = net energy derived from rest mass in V  
    (m  E positive, E  m negative) 

The energy imparted is a stochastic quantity defined as: 
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Energy imparted 
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Absorbed dose and dose rate 

The absorbed dose is relevant to all types of ionizing 
radiation fields and to any ionizing radiation source 
distributed within an absorbing medium 

𝐷 =
𝑑𝜖
𝑑𝑝

 

𝜖    =   expectation value of the energy imparted in the finite volume V 
during a given time interval 

d𝜖   =  expectation value of the energy imparted in an infinitesimal 
volume dV at point P 

dm =  mass of dV  
 
D is the expectation value of the energy imparted to matter per 
unit mass at point P  

(Gy) 

Average absorbed dose in a volume of mass m:   𝐷� = (ε)𝑒/𝑝 

�̇� =
𝑑𝐷
𝑑𝑑

=
𝑑
𝑑𝑑

𝑑𝜖
𝑑𝑝
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Energy imparted, energy transferred and net energy transferred 

Compton interaction followed by bremsstrahlung emission 

𝜀 = ℎ𝜐1 − ℎ𝜐2 + ℎ𝜐3 + 𝑇′ + 0 

𝜖𝑡𝑡 = ℎ𝜐1 − ℎ𝜐2 + 0 = 𝑇 

𝜖𝑡𝑡𝑛 = ℎ𝜐1 − ℎ𝜐2 − ℎ𝜐3 + ℎ𝜐4 + 0 
  = 𝑇 − ℎ𝜐3 + ℎ𝜐4  

𝜀 =  𝑅𝑐𝑒 𝑢 − 𝑅𝑐𝑢𝑡 𝑄 + 𝑅𝑐𝑒 𝑐 − 𝑅𝑐𝑢𝑡 𝑠 + ∑𝑄 

𝜀𝑡𝑡𝑒 =  𝑅𝑐𝑒 𝑢 − 𝑅𝑐𝑢𝑡 𝑄
𝑒𝑐𝑒𝑡 − 𝑅′𝑢+ ∑𝑄 =  𝜀𝑡𝑡  − 𝑅′𝑢 

𝜀𝑡𝑡 =  𝑅𝑐𝑒 𝑢 - 𝑅𝑐𝑢𝑡 𝑄
𝑒𝑐𝑒𝑡 + ∑𝑄 
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The energy transferred is just the kinetic energy 
received by charged particles in V (regardless of 
where or how they in turn spend that energy) 
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Example involving γ-ray emission, pair production and β+annihilation 

γ-ray emitted by a radioactive atom 

𝜀 = 𝜀𝑡𝑡 = 𝜖𝑡𝑡𝑛 = 0 − 1.022 𝑀𝑒𝑀 + ∑𝑄 

∑𝑄 = ℎ𝜐1 − 2𝑝0𝑠2 + 2𝑝0𝑠2 = ℎ𝜐1 

𝜀 = 𝜀𝑡𝑡 = 𝜖𝑡𝑡𝑛 = ℎ𝜐1 − 1.022 𝑀𝑒𝑀 = 
          = 𝑇1 + 𝑇2 
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Energy imparted, energy transferred and net energy transferred 

∑𝑄 = net energy derived from rest mass in V (m E positive, E m negative) 
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Only defined for x-ray and γ-ray photons 

𝑋 =
𝑑𝑄
𝑑𝑝 

𝑑𝑄 = absolute value of the total charge of the ions of one sign 
produced in air when all the electrons and positrons liberated 
by photons in air of mass 𝑑𝑝 are completely stopped in air 

 
 the ionization arising from the absorption of bremsstrahlung 

emitted by the electrons is not to be included in 𝑑𝑄 (only 
relevant at high energies) 

𝑊� = mean energy expended in a gas per ion pair formed  

𝑊�𝐸𝑐𝑡
𝑒

≃ 34 𝑒𝑀 per ion pair = 34 𝐽/𝐶 

(C/kg) 
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The exposure X 
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Relation of exposure X to energy fluence 𝛹  

The exposure X is the ionization equivalent of the collision kerma 
in air, for x- and γ-rays 

Exposure X at a point P due to an energy fluence Ψ of 
monoenergetic photons of energy E:  

𝑋 = Ψ ⋅
𝜇𝑒𝑒
𝜌 𝐸,𝐸𝑐𝑡

𝑒
𝑊� 𝐸𝑐𝑡

= 𝐾𝑐 𝐸𝑐𝑡
𝑒
𝑊� 𝐸𝑐𝑡

= 𝐾𝑐 𝐸𝑐𝑡/34 

1 R (roentgen) is the exposure that produces in air one esu of 
charge of either sign per 0.001293 g of air (the mass contained 
in 1 cm3 at 760 Torr and 0°C) 
 
1 R = 2.58 x 10-4   C kg-1 

(C kg-1) 
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�̇� =
𝑑𝑋
𝑑𝑑

 

Exposure occurring between times t0 and t1: 

𝑋 = � �̇� 𝑑  𝑑𝑑
𝑡1

𝑡0
 

(C kg-1 s-1  or  R s-1) 
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Exposure rate 

For a photon spectrum with energy fluence Ψ′ 𝐸 : 

𝑋 = � 𝜇𝑒𝑒/𝜌 𝐸,𝐸𝑐𝑡 𝑒/𝑊� 𝐸𝑐𝑡Ψ′ 𝐸 𝑑𝐸
𝐸𝑚𝑚𝑚

𝐸=0
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Characterization of x- or γ-fields by the exposure X 

• The energy fluence Ψ is proportional to X for any given photon 
energy or spectrum 

• Air is similar to soft tissue (muscle) in effective atomic number, so 
that it is “tissue-equivalent” w.r.t. x- or γ-ray energy absorption 

• If one is interested in the effect of x- or γ-radiation in tissue, air 
may be substituted as a reference medium in a measuring 
instrument 

• X  α  𝜇𝑒𝑒/𝜌 𝐸,𝐸𝑐𝑡  
• Kc in muscle  α   𝜇𝑒𝑒/𝜌 𝐸,𝐸𝑢𝑐𝑐𝑙𝑒 
• 𝜇𝑒𝑒/𝜌 𝐸,𝐸𝑢𝑐𝑐𝑙𝑒 / 𝜇𝑒𝑒/𝜌 𝐸,𝐸𝑐𝑡 
  ≈ 1.07 ± 3% for E = 4 keV – 10 MeV 
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Charged-particle and radiation equilibrium  

Generally, the transfer of energy (kerma) from a photon beam to charged 
particles at a particular location does not lead to the absorption of energy 
by the medium (absorbed dose) at the same location 
(e.g., a 10 MeV electron has a range in water of about 5 cm) 

a) All energy transferred by photons to electrons is deposited in M ⇒ D = K 
b) Electrons originates outside M but deposit part of their energy in M ⇒ D > K 
c) Electrons originates in M but deposit part of their energy outside M ⇒ D < K 

If (b) and (c) compensate each other ⇒ CPE ⇒ D = K  
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Radiation equilibrium  

62 
Sketch courtesy M. Kissick 

𝜀 = ∑𝑄 

𝑅𝑐𝑒 𝑢 = 𝑅𝑐𝑢𝑡 𝑄    and   𝑅𝑐𝑒 𝑐 = 𝑅𝑐𝑢𝑡 𝑠 

Radiation equilibrium 

• Medium of homogeneous atomic composition 
• Medium of homogeneous density 
• Radioactive source uniformly distributed  
• No electric and magnetic fields present to 

perturb the charged-particle paths 

The dimensions of the volume are much larger than the mean free 
path of the radiation 

𝑑̅ = mean free path of the photons 
r = radius to the edge of the volume 

𝐷 =
𝑑 ∑𝑄
𝑑𝑝
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Charged-particle equilibrium  

63 

𝜀 =  𝑅𝑐𝑒 𝑢 − 𝑅𝑐𝑢𝑡 𝑄 + ∑𝑄 = 𝜖𝑡𝑡 

𝑅𝑐𝑒 𝑐 = 𝑅𝑐𝑢𝑡 𝑠 

Charged-particle equilibrium 

• Medium of homogeneous atomic composition 
• Medium of homogeneous density 
• Radioactive source uniformly distributed  
• No inhomogeneous electric and magnetic 

fields present 

The dimensions of the volume are much larger than the mean free 
path of the secondary charged-particles 

𝐷 =
𝑑𝜀
𝑑𝑝

=
𝑑𝜖𝑡𝑡
𝑑𝑝

= 𝐾   𝑑𝑛𝑑   Ψ =
𝐷

𝜇𝑡𝑡/𝜌
 K =  Ψ ⋅ 𝜇𝑡𝑡/𝜌  
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Photon energy (MeV) 

bone 

air muscle 

Charged-particle and radiation equilibrium  

Conversion coefficients from energy fluence to absorbed dose 
(for CPE and negligible radiative losses) 
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Charged-particle equilibrium  

β = D / Kc 

K =  Ψ ⋅ 𝜇𝑡𝑡/𝜌  

𝐾 = 𝐾𝑠 if radiative losses are negligible 
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𝐾 = 𝐾0𝐵𝑒−𝜇𝐸 

Depth in medium 

K0 
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Point at which CPE exists 
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Transient charged-particle equilibrium  

B = build-up factor 
 
µ = attenuation coefficient 

𝐷 = 𝐾 1 + 𝜇′�̅�  

Build-up region 

TCPE region 
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Compton 

67 

Charged-particle equilibrium  

Radiative losses are negligible (and K = Kc) for low energy photons 
and neutrons (secondaries are protons and nuclei) 

• CPE exists (no CP enter or exit) 
• hν’’ is included in K 
• hν’’ in not included in D and Kc 
 
⇒  D = Kc < K 
 
 K – D = Kr 

If the electron would not radiate part of its energy ⇒ Kr = 0 

In carbon, water, air and other low-Z media, Kr = K - Kc < 1% for 
photons up to 3 MeV 
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Dose, kerma and collision kerma 

(a.u.) 

Depth (a.u.) 

Uncollimated beam of high-energy photons impinging 
perpendicularly on a semi-infinite slab of absorbing material 

𝐾 = 𝐾0𝐵𝑒−𝜇𝐸 = Ψ0
𝜇𝑡𝑡
𝜌

𝐵𝑒−𝜇𝐸 

For e.g. 6 MeV photons on Al: 

𝜇𝑒𝑒
𝜇𝑡𝑡 6 𝑀𝑒𝑀

= 0.95 

𝐾𝑠 = Ψ
𝜇𝑒𝑒
𝜌

=
𝜇𝑒𝑒
𝜇𝑡𝑡

𝐾 

𝐾0=Ψ0
𝜇𝑡𝑡
𝜌

 

At the surface: 
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Dosimetry fundamentals 

𝐷 = 𝐾𝑠 = Ψ
𝜇𝑒𝑒
𝜌  

CPE 
𝐷 = 𝐾𝑠 1 + 𝜇′�̅� = Ψ

𝜇𝑒𝑒
𝜌 1 + 𝜇′�̅�  

TCPE 

For photons 

For neutrons 

𝐷 = 𝐾 = Φ𝐹𝑒 
CPE 

𝐷 = 𝐾 1 + 𝜇′�̅� = Φ𝐹𝑒 1 + 𝜇′�̅�  
TCPE 

𝐷𝐴
𝐷𝐵

=
𝐾𝑠 𝐴
𝐾𝑠 𝐵

=
𝜇𝑒𝑒/𝜌 𝐴

𝜇𝑒𝑒/𝜌 𝐵
 

CPE 

𝐷𝐴
𝐷𝐵

=
𝐾 𝐴
𝐾 𝐵

=
𝐹𝑒 𝐴

𝐹𝑒 𝐵
 

CPE 
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• µ’ is the common slope of the K, D and Kc curves 
•  �̅� is the mean distance the secondary charged 

particles carry they kinetic energy in the direction 
of the primary rays while depositing it as dose 
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Relating absorbed dose D in air to exposure X for x- or γ-fields 

𝐷𝐸𝑐𝑡 = (𝐾𝑠)𝐸𝑐𝑡= 𝑋 ⋅
𝑊�
𝑒 𝐸𝑐𝑡

 
CPE 

J/kg J/kg C/kg 34 J/C 

If D is in Gy and X is in Roentgen, remembering that: 

𝐷𝐸𝑐𝑡 = (𝐾𝑠)𝐸𝑐𝑡= 2.58𝑥10−4𝑥 34 𝑋 𝐺𝑄 = 8.76𝑥10−3𝑋 (𝐺𝑄) = 0.876 𝑋 (𝑝𝑑𝑑)  
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𝑋 = Ψ ⋅
𝜇𝑒𝑒
𝜌 𝐸,𝐸𝑐𝑡

𝑒
𝑊� 𝐸𝑐𝑡

= 𝐾𝑐 𝐸𝑐𝑡
𝑒
𝑊� 𝐸𝑐𝑡

= 𝐾𝑐 𝐸𝑐𝑡/34 

and 1 R = 2.58 x 10-4   C kg-1 
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