

Instrumentation 2 – Solid state detectors

Hybrid pixel detectors and their applications

Thilo MICHEL, University of Erlangen-Nuremberg

Thu. 22/11/2012, 10:00 – 11:00 am

HOUSTON

OUOIT

UNIVERSITY OF WOLLONGONG

Agenda

The Medipix/Timepix detector

• Energy response

• Application: Imaging spectroscopy at high flux

• Application: Material resolved imaging

• Application: Dosimetry

The Medipix2/3 and Timepix detectors: hybrid photon counting pixel detectors

ASIC/Sensor:

- Development: International Collaboration with seat at CERN
- Bump-bonded with Pb/ Sn
- 65536 pixels in 256 columns and 256 rows
- Pixel pitch: 55 µm
- Size of the matrix: 14 mm (2 cm²)
- 0.25 μm CMOS

Sensor:

- Materials: Si, GaAs, CdTe
- Bias voltage: 150 V (300 µm Si)
- 2x2-version (Quad)

Step 1a: photoabsortion + relaxation

- Energy not suffcient to remove e- from K-shell
- Longer penetration depth

- Production and detection of fluorescence photons and Auger electron emission
- Smaller penetration depth
- Broader transversal profile

Step 1b: Continuous energy loss of electrons

Contiouous energy loss: Bethe-Bloch-Fomula

$$-\left\langle \frac{dE}{dx} \right\rangle = Kz^2 \rho \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{2m_0 c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - 2\beta^2 - \delta - c \frac{C}{Z} \right]$$

• For silicon: electron path length approximately

$$l[mm] = \mathop{\mathbb{C}}\limits_{e} \frac{E[keV]}{10} \overset{0}{\overset{1.75}{\overset{.}{\vartheta}}}$$

Step 2: Drift and diffusion of released charge carriers in semiconductor

Transport of charge carriers described by differential equation

Step 2: Drift and diffusion of charge carriers

Attention: Do not forget the second charge carrier type

Step 3: signal generation in pixel electrode

Influenced current

- Charge above electrode influences mirror charge in all pixel electrodes
- Charge carrier moves -> mirror charge changes
- · A current flows in or out the pixel electrode

Weighting potential

• Pixelelectrode at X_j is put to norm weighting potential

$$f_{Weighting}(\vec{x}_j) := 1$$

• Other electrodes to 0:

$$f_{Weighting}(\vec{x}_{i^1j}) := 0$$

Solve Laplace equation:

$$\mathsf{D}f_{Weighting} = 0$$

• Obtain weighting-Field:

$$\overrightarrow{W} = \overrightarrow{\nabla} f_{Weighting}$$

Step 3: The weighting field above a pixel electrode

Attention: The charge carrier type drifting to pixels contributes most!!!

Step 3: the pulse-forms of the influenced currents

Step 3: Pulseform depends on point of generation of charge carriers

Step 4: integrate current and process digitally

Principle

- Pixel electronics
 - Charge-Sensitive
 Preamplifier
 - 1 discriminator (minimum threshold approx. 1000 e- = 3.6 keV in Si and 4.4 keV in CdTe)
 - 1 counter per pixel
- Operation modes
 - Counting
 - Time-Over-Threshold
 - Time-Of-Arrival

Advantages and disadvantages of the Medipix detector in X-ray imaging

Advantages

- Noiseless dark field image
- No readout noise
- No blooming
- No afterglow
- Very linear at low rates
- High position resolution
- High frame rate
- Energy sensitive

Disadvantages

- Small size
- Charge-Sharing
- Multiple counting reduces DQE
- Rate limitations at high flux (10¹⁰ photons/cm²/sec)

Working principle

Working principle

Pixelwise energy calibration for ToT mode necessary

Agenda

• The Medipix/Timepix detector

Energy response

• Application: Imaging spectroscopy at high flux

• Application: Material resolved imaging

• Application: Dosimetry

Does it measure the impinging photon energy ?

Threshold scan for 60 keV photons onto silicon sensor

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

counts

Differentiated threshold-scan = response function

Response of a CdTe Medipix to X-rays

Simulation of response has to take many effects into account

Physics models needed for:

- Elektromagnetic interactions
- Secondary radiation (fluorecences)
- Tracking on µm-scale
- Fano-Noise
- Charge-Carrier respulsion
- Isotropic diffusion during drift
- Limited charge carrier lifetime
- Electron+hole signal contribution
- Electric field in doped CdTe
- Electrode size, pitch (Weighting potential)
- Electronics noise
- Threshold dispersion

Experiments^{*} / Simulations

	pixel pitch					
	220–100	330-195	440-195	550-195		
	#260	#110	#64	#36		
ode size	220–140	330–250	440-360	550–300		
	#260	#121	#64	#36		
electro	220–185	330-295	440-405	550–515		
	#260	#121	#64	#42		
	220–195	330–305	440-415	550-525		
	#260	#110	#64	#36		

1.6 mm CdTe, 700 V

Response matrix for silicon sensor

Agenda

• The Medipix/Timepix detector

• Energy response

• Application: Imaging spectroscopy at high flux

• Application: Material resolved imaging

• Application: Dosimetry

Spectrum of deposited energies is a convolution of response with impinging spectrum

Possibilities to get impinging spectrum:

- Pseudo Inverse Matrix
- Spectrum-Stripping
- Bayesian deconvolution

ERLANGEN CENTRI

Differentiated threshold scans can be used for deconvolution, BUT ...

...it is statistically better to use threshold scans directly in Bayesian deconvolution

27

A difficulty: threshold dispersion among pixels

Measurement (N40 X-ray quality) Global Kalibration of thresholds

Image at 42,5 keV threshold

Improvement by pixelwise threshold calibration

Global calibration (64k pixels and 1 calibration) Pixelwise calibration (64k calibrations)

Courtesy: Peter Sievers (Physikalisch Technische Bundesanstalt PTB)

29

Spectral imaging with a brachytherapy X-ray tube

- Tube-collimator: 10 cm
- Collimator-detector: 30 cm
- Hole in collimator: 50 µm
- Collimator thickness: 1 mm
- => Magnification: 2.99

- Acc. voltage: 50 kV
- Current: 40 µA
- Measurement time: per threshold: 60 s

overall:

4,4 h ERLANGEN CENTRE FOR ASTROPARTICLE

The electron beam moves around

Look from the side: Misalignment of the target ...

... causes differences in the spectrum

Agenda

• The Medipix/Timepix detector

• Energy response

• Application: Imaging spectroscopy at high flux

Application: Material resolved imaging

• Application: Dosimetry

Principle of Material Reconstruction

A method of material reconstruction without explicit spectrum reconstruction

Measurement details

- Tested with the MARS scanner together with the University of Canterbury, Christchurch, New Zealand
- Medipix2 MXR, 300 µm Si sensor
- Energy calibration with ²⁴¹Am, Gd- and Mo K-edges
- Threshold equalisation mask generated with flatfield at THL approx. 35keV and not at the noise floor
- Source: 0.1mA @75kV tungsten anode X-Ray tube
- Acquisition at 4 THL values: 8, 20, 33 and 45keV with 2, 3, 4 and 5s duration respectively
- 3 detector positions and 180 projections (360 degrees)

Experimental setup

Material Reconstruction: Projections

Material Reconstruction in CT: Brightness = density of base materials (g/cm³)

Photon counting at 8 keV threshold

iodine

water / non iodine

Brightness = areal density of materials

RLANGEN CENTRI OR ASTROPARTIC

Agenda

• The Medipix/Timepix detector

• Energy response

• Application: Imaging spectroscopy at high flux

• Application: Material resolved imaging

• Application: Dosimetry

The personal dose equivalents Hp(10) and Hp(0.07)

Definition of the personal dose equivalents

• Dose:

$$H = \lim_{\Delta V \to 0} \frac{\Delta E}{\rho \cdot \Delta V}$$

- H_p(d): dose in soft tissue in a certain depth d [mm] of the ICRU slab phantom (30 x 30 x 15 cm³ PMMA)
- To be measured with an active personal dosemeter:
 - H_p(10): Deep dose
 - $H_p(0.07)$: Surface dose

Photon energy dependence of personal dose equivalents ¹⁾

Example: $H_p(0.07) = 1 \text{ nSv}$

- 10 keV: 140 photons/cm²
- 60 keV: 2000 photons/cm²
- 200 keV: 800 photons/cm²

Line	Characteristic under test or influence quantity	Minimum rated range of influence quantity	Limit of variation of instrument parameter or relative response for whole rated range	Sub- clause
1	Variation of the response due to the non-linearity of the response itself	Four orders of magnitude for personal dose equivalent	±15 % ^{a)} dose equivalent meter	9.3
2	Statistical fluctuation, <i>v</i> : dose equivalent <i>H</i> _p (10)	<i>H</i> < 1 μSv 1 μSv ≤ <i>H</i> < 11 μSv <i>H</i> ≥ 11 μSv	15 % (16 – <i>H</i> /(1 µSv)) % 5 %	9.3.5
3	Statistical fluctuation, v : dose equivalent rate $I_{p}^{A}(10)$	H ^A < 10 μSv h ⁻¹ 10 μSv h ⁻¹ ≤ H ^A <60 μSv h ⁻¹ H ^A ≥ 60 μSv h ⁻¹	20 % (21 – ℎ/(10 µSv h⁻¹)) % 15 %	9.3.5
4	Radiation energy and angle of incidence	80 keV to 1,5 MeV or 20 keV to 150 keV and 0° to 60° from reference direction under consideration	–29 % to +67 % ^{b)}	9.5.2
5	Gamma radiation energy and angle of incidence for use in the vicinity of nuclear reactor installations	1,5 MeV to 6,6 MeV and 0° to 60° from reference direction under consideration	–50 % to +100 % ^{b)}	9.5.2
6	As in line 4 and 5 but new reference direction opposite to that one used	See line 4 and 5, if no statement concerning wrong orientation is given by the manufacturer	See line 4 and 5, if no statement concerning wrong orientation is given by the manufacturer	7.7
7	Dose rate	0,5 µSv h ^{−1} to 1 Sv h ^{−1 c)}	±20 % a) d)	9.4
8	Overload	10 times maximum range, but for dose rate not more than 10 Sv h ⁻¹	Indication to be off-scale on the high side or dose equivalent(rate) meter to indicate overload (for 10 min)	9.9
9	Response time for dose equivalent rate indication and alarm functions	Å _p (10) <u>≥</u> 100 µSv h ⁻¹ and 10 s maximum waiting time	±20 % and any delay of more than 1 s in the alarm responding shall not result in the receipt of a dose in excess of 10 μSv	9.10.2
10	Effects of radiation not intended to be measured	_	Response to be stated by the manufacturer	6.8
11	Response due to natural background radiation	_	To be stated by the manufacturer	9.4.2

Table 4 – Radiation characteristics of $H_p(10)$ dosemeters for X and gamma radiation

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Solution: estimation of the dose equivalent with the measured number of counts in energy intervals

Calculation of conversion factors and energy bins

Extension of energy range beyond 200 keV only possible with filters above pixel detector,

Reason: energy deposition spectra look the same for higher energies due to dominance of Compton scattering in silicon

Response to perpendicular irradiation

3 detectors with 2 filters and 3 x 16 energy bins

Under angle of incidence the sensor effectively becomes thicker and smaller

Dose reconstruction with 220 micron pixel at high dose rates

Pile-up in preamplifier (analog side of electronics)

- Two events above threshold are recorded as one event but with higher energy
- Two events originally below threshold are detected by coincidence

How does pile-up influence the measured spectrum ?

53

New pixel detector Dosepix

Disadvantages Timepix for dosimetry

- Non-linear ToT(E)
- Feedback from digital to analog pixel electronics
- Dynamic range of test pulsers too small or
- Sensitive to temperature changes
- Power consumption too high
- Pixel suffer from charge sharing (too small)
- More functionality needed in pixel
- Dead time during readout

New detector: 16 x 16 Pixel with 220 µm x 220 µm area

May 2011: the first sample without sensor

Pixel electronics (CERN, IBA, Uni Erlangen)

Hybrid photon counting pixel detectors

- ... have their roots in high energy physics (e.g. ATLAS, CMS, ALICE,...)
- ... can have intelligent pixel cell electronics
- ... are used in combination with Si, CdTe, GaAs sensor layers
- ... can measure energy and time of arrival
- ... can have high position resolution
- ... can process events in high flux individually
- ... allow spectrometry in high flux fields
- ... allow identification of particle types by track signature