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What are statistics 
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Statistics are like a drunk with a lamppost: used 
more for support than illumination. 

Winston Churchill British politician  

 

Statistics are like bikinis.  What they reveal is 
suggestive, but what they conceal is vital.  

 Aaron Levenstein Professor emeritus at Baruch 
College 



Characterization of data 

Let us consider a series of independent measurements 

(x1, x2, x3………. xN) 

 

Two elementary properties are: 

 

Sum                                   S=  𝑥𝑘
𝑁
𝑘=0  

 

Experimental mean               𝑥 𝑒= 
𝑆

𝑁
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Characterization of data 

A convenient representation is in terms of  

frequency distribution function F(x) 

 

 

𝐹 𝑥 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑥

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑁
 

 
The distribution is automatically normalized 

 𝐹(𝑥)=1 

∞

𝑋=0
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Characterization of data 

It may be that xi are all different. In this case  

 

 

𝐹 𝑥 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑥 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑏𝑖𝑛 Δ𝑥

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑁
 

 
The distribution is automatically normalized 
 

 𝐹(𝑥)=1 

𝑛 𝑜𝑓 𝑏𝑖𝑛𝑠

𝑋=0
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Characterization of data 

The frequency distribution function allows the calculation of the mean value as 

follows 

𝑥 𝑒 =  𝑥 ∙ 𝐹(𝑥) 

∞

𝑋=0

 

 

It remains to evaluate the spread of the experimental data. This is possible by 

introducing the sample variance. 

As a first step let us define the residual of any data point: 

 

𝑑𝑖 = 𝑥𝑖 − 𝑥 𝑒    and 𝜖𝑖 = 𝑥𝑖 − 𝑥  
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Characterization of data 

Because 𝑑𝑖 and 𝜖𝑖 can assume positive and negative values it is easy to 
understand that 

𝑑 =  𝑑𝑖 = 𝜖 =  𝜖𝑖 = 0

∞

𝑋=0

∞

𝑋=0

 

 
It is better to use the square of the residual 
 

𝑑𝑖
2 = (𝑥𝑖 − 𝑥𝑒)

2      ϵ𝑖
2 = (𝑥𝑖 − 𝑥 )

2 
 

The variance is the mean value of ϵ𝑖
2 

ϵ2 =
1

𝑁
 ϵ𝑖

2

∞

𝑋=0
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Characterization of data 

ϵ2 =
1

𝑁
 (𝑥𝑖 − 𝑥 )

2

∞

𝑋=0

 

This definition of variance involves the mean true value 𝑥  that, in practical 

cases, is unknown. 

The best estimate 𝑠2of   ϵ2 can be obtained replacing 𝑥   with 𝑥𝑒 .   
 

𝑠2 =
1

𝑁 − 1
 (𝑥𝑖 − 𝑥𝑒)

2

∞

𝑋=0

 

 

The division by N-1 accounts for the dependence of 𝑥𝑒 in the experimental 

data set. 
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Characterization of data 

Considering the frequency distribution function it can be written: 

 

𝑠2 =  𝑥𝑖 − 𝑥 
2

∞

𝑋=0

∙ 𝐹(𝑥) 

 

The variance is a useful indicator of the degree of internal scattering of 

experimental data. 
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Statistical model 

The frequency distribution function is an «a posteriori» distribution 
assessed experimentally. 
A model of distribution can be derived from “a priori” information about 
the statistical quantity. 
Let us consider a binary process in that only two results are possible, 
success or failure. 
 
For instance 
Toss a coin                                              (success=head, p=1/2) 
Roll a die                                                 (success=a six, p=1/6)  
Observe a radioactive nucleus  

for a time t                                              (success=decays, p=1 − 𝑒−𝜆∙𝑡 ≈ 𝜆 ∙ 𝑡) 
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Binomial distribution 

The question to address is: 
Let us consider an honest die and define: success=a six. 
What is the probability to obtain x successes after n trials (i.e. n rolls) 
 
𝑃 𝑥 = 𝑝 ∙ 𝑝 ∙ 𝑝…… . .∙ 𝑝 ∙ 1 − 𝑝 ∙ 1 − 𝑝 …… 1 − 𝑝 = 𝑝𝑥 ∙ (1 − 𝑝)𝑛−𝑥 

 
                                    x                                        n—x 
 
This is the probability of x consecutive successes  and n-x consecutive failures 
 

𝑃 𝑥 =
𝑛!

𝑛 − 𝑥 ! ∙ 𝑥!
∙ 𝑝𝑥∙ (1 − 𝑝)𝑛−𝑥 
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Binomial distribution 

Let us calculate mean value and variance for the binomial distribution 
 

𝑥 =  𝑥 ∙ 𝑃(𝑥)

𝑛

𝑘=0

= 𝑛 ∙ 𝑝 

 

𝜎2 =  (𝑥 − 𝑥 )2∙ 𝑃(𝑥)

𝑛

𝑘=0

= 𝑛 ∙ 𝑝 ∙ (1 − 𝑝) 
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Binomial distribution 

Toss a coin      𝑥 = 𝑛 ∙ 𝑝 = 𝑛 ∙ 1/2                 𝜎2 = 𝑛 ∙ 𝑝 ∙ 1 − 𝑝 = 𝑛 ∙ 1/4 
 
Roll a die        𝑥 = 𝑛 ∙ 𝑝 = 𝑛 ∙ 1/6                 𝜎2 = 𝑛 ∙ 𝑝 ∙ 1 − 𝑝 = 𝑛 ∙ 5/36 
 
 
 
Observe a radioactive nucleus for a time t  (and assuming n constant) 
          (success=decays, p=1 − 𝑒−𝜆∙𝑡 ≈ 𝜆 ∙ 𝑡) 
 

𝑥 =  𝑥 ∙ 𝑃(𝑥)𝑛
𝑘=0 = 𝑛 ∙ 𝑝 = 𝑛 ∙ 𝜆 ∙ 𝑡                                       𝐴 =

𝑥 

𝑡
= 𝑛 ∙ 𝜆 

 

𝜎2 =  (𝑥 − 𝑥 )2∙ 𝑃(𝑥)

𝑛

𝑘=0

= 𝑛 ∙ 𝑝 ∙ 1 − 𝑝 = 𝑛 ∙ 𝜆 ∙ 𝑡 ∙ (1 − 𝜆 ∙ 𝑡) 
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Poisson distribution 

𝑃 𝑥 =
𝑛!

𝑛 − 𝑥 ! ∙ 𝑥!
∙ 𝑝𝑥∙ (1 − 𝑝)𝑛−𝑥 

 

 

 

 

 

 

𝑃 𝑥 =
𝑝 ∙ 𝑛 𝑥 ∙ 𝑒−𝑝∙𝑛

𝑥!
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p<<1      𝜆 ∙ 𝑡 ≪ 1 
The observation time much lower than the decay time 



Poisson distribution 

𝑃 𝑥 =
𝑛!

𝑛 − 𝑥 ! ∙ 𝑥!
∙ 𝑝𝑥∙ (1 − 𝑝)𝑛−𝑥 

 

 

 

 

 

 

𝑃 𝑥 =
𝑝 ∙ 𝑛 𝑥 ∙ 𝑒−𝑝∙𝑛

𝑥!
=
𝑥 𝑥 ∙ 𝑒−𝑥 

𝑥!
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p<<1      𝜆 ∙ 𝑡 ≪ 1 
The observation time much lower than the decay time 



Poisson distribution 

 

𝑃 𝑥 =
𝑝 ∙ 𝑛 𝑥 ∙ 𝑒−𝑝∙𝑛

𝑥!
=
𝑥 𝑥 ∙ 𝑒−𝑥 

𝑥!
 

 

𝑥 =  𝑥 ∙ 𝑃(𝑥)

𝑛

𝑘=0

= 𝑛 ∙ 𝑝 

 

𝜎2 =  (𝑥 − 𝑥 )2∙ 𝑃(𝑥)

𝑛

𝑘=0

= 𝑛 ∙ 𝑝 

 

𝜎2 = 𝑥  
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Poisson distribution 
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m=n*p 30 10 5 4 3 2 1

0 9.35762E-14 4.54E-05 0.006738 0.018316 0.049787 0.135335 0.367879

1 2.80729E-12 0.000454 0.03369 0.073263 0.149361 0.270671 0.367879

2 4.21093E-11 0.00227 0.084224 0.146525 0.224042 0.270671 0.18394

3 4.21093E-10 0.007567 0.140374 0.195367 0.224042 0.180447 0.061313

4 3.1582E-09 0.018917 0.175467 0.195367 0.168031 0.090224 0.015328

5 1.89492E-08 0.037833 0.175467 0.156293 0.100819 0.036089 0.003066

6 9.47459E-08 0.063055 0.146223 0.104196 0.050409 0.01203 0.000511

7 4.06054E-07 0.090079 0.104445 0.05954 0.021604 0.003437 7.3E-05

8 1.5227E-06 0.112599 0.065278 0.02977 0.008102 0.000859 9.12E-06

9 5.07567E-06 0.12511 0.036266 0.013231 0.002701 0.000191 1.01E-06

10 1.5227E-05 0.12511 0.018133 0.005292 0.00081 3.82E-05 1.01E-07

11 4.15282E-05 0.113736 0.008242 0.001925 0.000221 6.94E-06 9.22E-09

12 0.000103821 0.09478 0.003434 0.000642 5.52E-05 1.16E-06 7.68E-10

13 0.000239586 0.072908 0.001321 0.000197 1.27E-05 1.78E-07 5.91E-11

14 0.000513399 0.052077 0.000472 5.64E-05 2.73E-06 2.54E-08 4.22E-12

15 0.001026797 0.034718 0.000157 1.5E-05 5.46E-07 3.39E-09 2.81E-13

16 0.001925245 0.021699 4.91E-05 3.76E-06 1.02E-07 4.24E-10 1.76E-14

17 0.003397491 0.012764 1.45E-05 8.85E-07 1.81E-08 4.99E-11 1.03E-15

18 0.005662486 0.007091 4.01E-06 1.97E-07 3.01E-09 5.54E-12 5.75E-17
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Gauss distribution 
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𝑃 𝑥 =
1

2𝜋𝜎2
𝑒
− 
𝑥−𝑥 2

2𝜎2  

𝜎2 = 𝑥  
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Random variable 

m=10 

Poisson

Gauss



Discrete/continuous distributions 

 

Discrete (Poisson) 

   
 

 

 𝑃 𝑥 =

𝑥2

𝑥=𝑥1
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Probability of 
observing          a 
value of x in the 

range x1 – x2 

 

Continuous (Gauss) 

   
 

 

 𝑃 𝑥 𝑑𝑥 =
𝑥2

𝑥1

 

Probability of 
observing          a 
value of x in the 

range x1 – x2 

𝑃 𝑥 = probability 𝑃 𝑥 = probability density 



Gaussian confidence intervals 

Prob(x− ≤  x ≤ x+) = 𝑝 𝑥 𝑑𝑥 = 𝐶
𝑥+
𝑥−

 

We say: 

x lies in the interval [x- , x+] with confidence C 
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Gaussian confidence intervals 

• P(x) = Gaussian distribution with mean μ and 
variance σ2 (σ is the standard deviation): 

• some examples of confidence intervals: 
• x±=μ±kσ  k=1        C = 68% 

• x±=μ±kσ  k=2        C = 95.4% 

• x±=μ±kσ  k=1.64  C = 90% 

• x±=μ±kσ  k=1.96  C = 95% 

k is the coverage factor  
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Poisson distribution 

 

𝜎2 = 𝑥  
 

 

                       𝐼𝑓 𝑥  >30   (10)                                    𝐼𝑓 𝑥  <30   (10) 

 
 

 

measurement of counts= 𝑥 ± 𝑥                  measurement of counts= 𝑥 ± 𝑥   
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 χ2 test 

• This test is used to compare an experimental 
distribution to a theoretical distribution 
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𝐹 𝑥  frequency distribution P 𝑥  probability distribution 



 χ2 test 
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𝐹 𝑥  frequency distribution P 𝑥  probability distribution 
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 χ2 test 

 

𝜒2 = 
𝑛𝐹(𝑥𝑖 − 𝑛𝑃(𝑥𝑖)

2

𝜎 𝑛𝐹(𝑥𝑖)
2

𝑁

𝑖=1

 

 

Assuming Poisson 
𝜎 𝑛𝐹(𝑥𝑖)

2 = 𝑛𝑃(𝑥𝑖) 
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𝐹 𝑥  frequency distribution P 𝑥  probability distribution 
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 χ2 test 

 

𝜒2 = 
𝑛𝐹(𝑥𝑖 − 𝑛𝑃(𝑥𝑖)

2

𝜎 𝑛𝐹(𝑥𝑖)
2
≈ 

𝜎 𝑛𝐹(𝑥𝑖)
2

𝜎 𝑛𝐹(𝑥𝑖)
2

𝑁

𝑖=1

𝑁

𝑖=1

≈ 𝑁 

 

 
𝜒2 =< ν > = < 𝑁 − 𝑐 > 

ν = degree of freedom   c=constraint 

c=2 for a Poisson distribution 

c=3 for a Gauss distribution 
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Reduced χ2 

𝜒𝑟
2 =
𝜒2

ν
=< 1 > 

 

If the 𝜒𝑟
2 <<1 the experimental distribution is «too close» to the 

target distribution 

 

If the 𝜒𝑟
2 >>1 the experimental distribution is «too far» from the 

target distribution 
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 χ2 test 

 

 

 

 

 

 

 

 

 

P=0.5 is the optimum agreement 
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 χ2 test 

The 𝜒2 can be evaluated without the F(x) distribution 

Let us consider a series of n measurements xi (counts taken in 1 
minute) with a mean value X and an experimental variance 𝜎2(X) 
and let us suppose a Poisson distribution 

 

 

X= 𝜎2(X)      𝜒2=  
(𝑥𝑖−𝑋)

2

𝑋
=
(𝑛−1)𝑠2

𝑋
=< 𝑛 − 1 >𝑛

𝑖=1  

s2  best estimate of the variance 
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 χ2  N.B. 

The 𝜒2 test holds for raw data only! 

 

 

 

30 

Count (60s) CPS

31 0.52

30 0.50

36 0.60

25 0.42

24 0.40

33 0.55

38 0.63

27 0.45

22 0.37

35 0.58

reduced chi^2 0.99 0.02



Poisson distribution in a time domain 

If a Poisson event happens at the time t0, what is the probability 
P(t) to obtain another Poisson event at the time t1+Δt. 

 

 

 

P(t)dt=(prob. of no event in the interval t0 - t1) x (probability of 
an event in the time interval Δt 

Let us call r the number of events per second (i.e. the countrate 
of a deterctor) 

31 

to t1 t1+ Δt 



Poisson distribution in a time domain 

P(t)dt=P(0) x rdt              𝑃 𝑥 =
𝑝∙𝑛 𝑥∙𝑒−𝑝∙𝑛

𝑥!
=
𝑥 𝑥∙𝑒−𝑥 

𝑥!
 

 

                                            𝑃 0 =
(𝑟𝑡)0∙𝑒−𝑟𝑡

0!
= 𝑒−𝑟𝑡 

 

 𝑃 𝑡 𝑑𝑡 = 𝑟𝑒−𝑟𝑡𝑑𝑡 
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to t1 t1+ dt 



Poisson distribution in a time domain 

 𝑃 𝑡 𝑑𝑡 = 𝑟𝑒−𝑟𝑡𝑑𝑡 
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Uncertainty assessement 
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Model 

X1  gross signal 

X2  background signal 

X5  to XN correction factors (calibration, environmental parameters etc.) 

Uncertainty: parameter, associated with the result of a measurement, that 
characterizes the dispersion of the values that could reasonably be attributed to 
the measurand 



Uncertainty assessement 
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We have: 

• to assess the uncertainty of every single input variable and the 

associated probability distribution. 

• To compose all the uncertainties obtain the uncertainty 

associated with y (combined uncertainty uc(y)) 

• To evaluate the probability distribution associated with y 

 

 

MIND to check the correlation of the input variables 



Uncertainty assessement 

 

 
Type A evaluation of standard uncertainty: are founded on frequency 

distributions.  

Type B evaluation of standard uncertainty: are founded on a priori 

distributions. 

 

The standard uncertainty is indicated with the letter u  (low case) 
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ISO/IEC GUIDE 98-3:2008  Guide to the expression of uncertainty in 

measurement  



Uncertainty assessement 
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Type A evaluation of standard uncertainty 

MIND that you can use this kind of assessment if you are reasonably sure 

that the random variable has a Gaussian distribution. 



Uncertainty assessement 
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Type B evaluation of standard uncertainty 



Examples of Type B evaluation  
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If I have only 3 repeated measurements of the same quantity the 

experimental standard deviation is meaningless. One technique is to 

define «a priori» a reasonable probability distribution 



Examples of Type B evaluation  
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I have only 2 repeated measurements of the same quantity 



Examples of Type B evaluation  
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Reading of a digital instrument, for instance a voltmeter 

 V=1.5            resolution 0.1 V 
 
 It can be assumed V in the range  
1.45 – 1.55 



Examples of Type B evaluation  
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Another possibility is a trapezoidal distribution 



Examples of Type B evaluation  
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 The digital indication oscillates between 
    V=1.5        and    V=1.7 
1.45-1.55             1.65-1.75   Resol. 0.1V 
 
 It can be assumed  
Vmean =1.6 V  
b=0.1 V  (oscillation) 
a=0.05V (resolution) 
 



Examples of Type B evaluation  
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A U shaped distribution is the typical distribution of the temperature in 

an air-conditioned lab. Usually the chiller starts and stops according to a 

temperature sensor. This causes a sinusoidal behavior of the temperature 



Examples of Type B evaluation  
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Uncertainty associated to the calibration factor 

Usually the calibration factor is given with an associated uncertainty (if 

the calibration lab is honest). 

But sometimes the calibration factor and the uncertainty cannot be used 

“as they are” because it’s impossible to reproduce the same experimental 

conditions of the calibration lab. 

Let’s consider the following problem: I have to measure the air kerma in 

a photon field with a survey meter. I have the instrument calibration 

factor for different photon energies, but I don’t know exactly the energy 

distribution of the photon field I’m going to measure. 



Uncertainty associated to 
 the calibration factor 
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Beam direction 

Position 1 

Position 2 / 3 



Uncertainty associated to 
 the calibration factor 
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Uncertainty associated to 
 the calibration factor 
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Energia keV 

Camera a ionizzazione in pressione 

I can suppose that the photon energy is in the range 80 keV – 200 keV 



Uncertainty associated to 
 the calibration factor 
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Uncertainty associated to 
 the calibration factor 
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This last example is important because it shows that the important uncertainties 
arise from an incomplete definition of  the quantity under measurement (energy 
distribution). 
For “on field” measurements it is important, and difficult, to assess these kinds of 
uncertainties. The researcher experience plays a key role. 
The main issues are: 
 
• Find out all the uncertainty sources 
• Define the most reasonable probability distributions 



Uncertainty propagation 
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Uncertainty propagation 

𝑦 = 𝑓 𝑥              𝑐𝑜𝑢𝑛𝑡𝑟𝑎𝑡𝑒 =
𝑐𝑜𝑢𝑛𝑡𝑠

𝑡
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𝜕(𝑓(𝑥)
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𝑢2 𝑐𝑜𝑢𝑛𝑟𝑎𝑡𝑒 =
𝑢2 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡2
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Uncertainty propagation 
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In case of uncorrelated input variables 



Uncertainty propagation 
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What is the probability distribution of y 

Central limit theorem (CLT) states that, given 
certain conditions, the mean of a sufficiently large 
number of independent random variables, each 
with finite mean and variance, will be 
approximately normally distributed 

http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Normal_distribution


Uncertainty propagation 
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The Central Limit Theorem is significant because it shows the very important 

role played by the variances of the probability distributions of the input 

quantities. It implies that the convolved distribution converges towards the 

normal distribution as the number of input quantities contributing to the 

variance of Y increases and that the convergence will be more rapid the 

closer the values of 
𝜕(𝑓(𝑥)

𝜕𝑥

2
𝜎2 𝑥  are to each other (equivalent in practice 

to each input estimate xi contributing a comparable uncertainty to the 

uncertainty of the estimate y of the measurand Y) 



Uncertainty propagation 
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Data are usually expressed in term of expanded uncertainty U (upper case). 

 

The expanded uncertainty U is obtained by multiplying the combined standard 

uncertainty uc(y) by a coverage factor k:  U = kuc( y) 

 

The value of the coverage factor k is chosen on the basis of the level of confidence 

required of the interval y − U to y + U.  

 

The standard choice is a 95% level of confidence. If a normal distribution is assumed, 

this means K=2 



Uncertainty propagation 
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Let’s get back to the air kerma measurement in a photon field with a survey 

meter. 

S

M
NMR Measuring model 

R  measurement result 
M instrument reading 
N calibration factor 
S sensitivity 
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Correlated input variables 
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Experimental evaluation of the covariance 
 (type A evaluation) 

s is an estimator of the covariance 



Correlation of  input variables 

A type B evaluation of the correlation can be done 

by observing the a variation δ1 in x1 produces a 

variation δ2 in x2. The correlation coefficient can be 

evaluated as follows: 
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Correlation of  input variables 

  

Sometimes it is possible to remove the correlation 

modifying the measuring model.  
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In case of correlated input variables 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 

67 

Problem: the unknown radon activity concentration in a water sample is 
determined by liquid-scintillation counting against a radon-in-water 
standard sample 
 
CS, CB, Cx are the number of counts recorded in the dead-time-corrected 
counting intervals T0 = 60 min for the standard, blank, and sample vials, 
respectively. 
 
tS, tB, tx are the times from the reference time t = 0 to the midpoint of 
the dead-time-corrected counting intervals T0 = 60 min for the standard, 
blank, and sample vials, respectively 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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The observed counts may be expressed as 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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Measuring model 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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The arithmetic means 𝑅𝑆 , 𝑅𝑥 and 𝑅  , and their experimental standard deviations 
s(𝑅𝑆 ), s(𝑅𝑥 ), and s(𝑅  ), are calculated in the usual way: 

= 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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The correlation coefficient r( 𝑅𝑆 , 𝑅𝑥) is assessed with a type A calculation 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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There are two ways to face the problem: 
 
With correlation                                                           without correlation 

𝐴𝑥 = 𝐴𝑠
𝑚𝑆𝑅𝑥

𝑚𝑥𝑅𝑆
 𝐴𝑥 = 𝐴𝑠

𝑚𝑆
𝑚𝑥
𝑅  



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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Result using the approach with correlation 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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Result using the approach without correlation 



Example 
ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity 
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Comparison of the two approaches 

With correlation                                                           without correlation 



Characteristics limits 
decision threshold and detection limit 

Suppose we measure the activity in an unknown 
sample: 

• the “decision threshold” gives a decision on whether or not 
the physical effect quantified by the measurand is present; 

 

• the “detection limit” indicates the smallest true value of the 
measurand which can still be detected; this gives a decision 
on whether or not the measurement procedure satisfies the 
requirements and is therefore suitable for the intended 
measurement purpose 

78 



decision threshold 

Let us suppose to know, « a priori» that in the sample 
there is no activity. The problem is: define a threshold 
“decision threshold” that permits to define a 
probability of false positive.   
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decision threshold 
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Measuring model 
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decision threshold 
Critical level 
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)(2)0( 2

2 xuwu 

Lc Critical level or decision threshold defines the percentage of false positive 

Si presuppone y=0 

It depends on the uncertainty u(x2) of the background measurement 

Lc=1.645*u(0) 
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detection limit 
LLD (Lower limit of detection) 
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detection limit 
LLD (Lower limit of detection) 
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detection limit 
LLD (Lower limit of detection) 
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LLD (y#) Can be calculated as follows: 
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Where k in the coverage factor coresponding to a given probability 
of false negative. K=1.645 -> p=5% 

The equation can be solved in an iterative way.  

LLD depends on x2 and W 



detection limit 
LLD (Lower limit of detection) 

85 

)()(2 22#

2

2
#

2*# wuyxu
Tw

y
wkyy rel











 )()(2 22#

2

2
#

2*# wuyxu
Tw

y
wkyy rel













)(2 wurel

0

0.05

0.1

0.15

0.2

0.25

0.3

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 101112 131415 161718 1920

y (risultato della misurazione)

p
(y

)

Lc=k*sigma=1.645*sigma

Gauss LD sigma=u(y)

0

0.05

0.1

0.15

0.2

0.25

0.3

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 101112 131415 161718 1920

y (risultato della misurazione)

p
(y

)

Lc=k*sigma=1.645*sigma

Gauss LD sigma=u(y)

)()(2 22#

2

2
#

2*# wuyxu
Tw

y
wkyy rel













Low )(2 wurelHigh 



Benford’s law 
first digit distribution 

We have the following problem: we need to calibrate a 
survey meter for X and gamma radiation in a calibration 
lab. In order to fit our budget we can get 1 point for 
every full scale. 

e.g. 

One point in the range  0-10 µSv (10 µSv full scale) 

One point in the range  0-100 µSv (100 µSv full scale) 

Etc.  
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Benford’s law 
first digit distribution 

How can we choose the calibration point? 

e.g. in the range 0-10µSv which is the better choice? 

1µSv or 2µSv….or 9µSv. In other words the calibration point 
must start with the digit 1 or 2 …..or 9. 

We can give an answer by addressing another question: 

During the routine on field measurements which is the first 
digit more probable to obtain? 

One could say: every digit has the same probability, but…… 
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Benford’s law 
first digit distribution 

….this is not true!!! 

Benford's Law (which was first mentioned in 1881 by the astronomer Simon 
Newcomb) states that if we randomly select a number from a table of 
physical constants or statistical data, the probability of occurrence of the first 
digit is distributed as follows: 

  

𝑃 𝑑 =
𝐿𝑛(1 +

1
𝑑
)

𝐿𝑛(10)
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Benford’s law 
first digit distribution 
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𝑃 𝑑 =
𝐿𝑛(1 +

1
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)

𝐿𝑛(10)
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9

P
ro

b
ab

ili
ty

 

First digit 



Benford’s law 
first digit distribution 
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Benford’s law 
first digit distribution 
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Benford’s law 
first digit distribution 
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Benford’s law 
first digit distribution 
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Benford’s law 
first digit distribution 
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Benford’s law 
first digit distribution 

What does the Benford’s law conceal about nature? 

 

1…………….….2…......3….......4…..5.…6...7..8.9 

95 

P(1)            =              P(2,3)           =           P(4,5,6,7) 

This means that the nature behaves in a logarithmic way 



Benford’s law 
first digit distribution 

Getting back to the calibration problems, it is better to 
choose a calibration point in the range: 

1 – 2µSv for the scale 0-10 µSv 

10 – 20 µSv for the scale 0-100µSv 

And so on 
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Benford’s law 
first digit distribution 
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benford sperim

Let us suppose to measure at 
one meter from a radiation 
source a doserate of 9.9 µSv/h. 
Let us measure up to 8 meters 
from the source in steps of 1 cm. 
According to the 1/r2 law the 
first digit is distributed according 
to the Benford law 
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