TRAINING COURSE ON RADIATION DOSIMETRY:

Statistical analysis and data handling

Marco CARESANA, POLIMI
Thu. 22/11/2012, 16:30-18:30 pm

				JABLUTRON	mi. mm			life.augmented	HOUSTON	CUOIT	UNVERSITY OF WCLIONGONG

What are statistics

Statistics are like a drunk with a lamppost: used more for support than illumination.
Winston Churchill British politician

Statistics are like bikinis. What they reveal is suggestive, but what they conceal is vital.
Aaron Levenstein Professor emeritus at Baruch College

F AU

Characterization of data

Let us consider a series of independent measurements

$$
\left(x_{1}, x_{2}, x_{3 \ldots \ldots \ldots} x_{N}\right)
$$

Two elementary properties are:

Sum

$$
\mathrm{S}=\sum_{k=0}^{N} x_{k}
$$

Experimental mean

$$
\bar{x}_{e}=\frac{S}{N}
$$

Characterization of data

A convenient representation is in terms of frequency distribution function $\mathrm{F}(\mathrm{x})$

$$
F(x)=\frac{\text { number of occurences of the value } x}{\text { number of measurement } N}
$$

The distribution is automatically normalized

$$
\sum_{X=0}^{\infty} F(x)=1
$$

AIT 陽高 1 ba

Characterization of data

It may be that x_{i} are all different. In this case

$$
F(x)=\frac{\text { number of the values } x \text { within a bin } \Delta x}{\text { number of measurement } N}
$$

The distribution is automatically normalized

$$
\sum_{X=0}^{n \text { of bins }} F(x)=1
$$

AIt

Characterization of data

The frequency distribution function allows the calculation of the mean value as follows

$$
\bar{x}_{e}=\sum_{X=0}^{\infty} x \cdot F(x)
$$

It remains to evaluate the spread of the experimental data. This is possible by introducing the sample variance.
As a first step let us define the residual of any data point:

$$
d_{i}=x_{i}-\bar{x}_{e} \quad \text { and } \epsilon_{i}=x_{i}-\bar{x}
$$

Characterization of data

Because d_{i} and ϵ_{i} can assume positive and negative values it is easy to understand that

$$
\bar{d}=\sum_{X=0}^{\infty} d_{i}=\bar{\epsilon}=\sum_{X=0}^{\infty} \epsilon_{i}=0
$$

It is better to use the square of the residual

$$
d_{i}^{2}=\left(x_{i}-\overline{x_{e}}\right)^{2} \quad \epsilon_{i}^{2}=\left(x_{i}-\bar{x}\right)^{2}
$$

The variance is the mean value of ϵ_{i}^{2}

$$
\overline{\epsilon^{2}}=\frac{1}{N} \sum_{X=0}^{\infty} \epsilon_{i}^{2}
$$

Characterization of data

$$
\overline{\epsilon^{2}}=\frac{1}{N} \sum_{X=0}^{\infty}\left(x_{i}-\bar{x}\right)^{2}
$$

This definition of variance involves the mean true value \bar{x} that, in practical cases, is unknown.
The best estimate s^{2} of $\overline{\epsilon^{2}}$ can be obtained replacing \bar{x} with $\overline{x_{e}}$.

$$
s^{2}=\frac{1}{N-1} \sum_{X=0}^{\infty}\left(x_{i}-\overline{x_{e}}\right)^{2}
$$

The division by $N-1$ accounts for the dependence of $\overline{x_{e}}$ in the experimental data set.

Characterization of data

Considering the frequency distribution function it can be written:

$$
s^{2}=\sum_{X=0}^{\infty}\left(x_{i}-\bar{x}\right)^{2} \cdot F(x)
$$

The variance is a useful indicator of the degree of internal scattering of experimental data.

AIT Re

Statistical model

The frequency distribution function is an «a posteriori» distribution assessed experimentally.
A model of distribution can be derived from "a priori" information about the statistical quantity.
Let us consider a binary process in that only two results are possible, success or failure.

For instance
Toss a coin

$$
\begin{aligned}
& \text { (success=head, } p=1 / 2 \text {) } \\
& (\text { success }=a \operatorname{six}, p=1 / 6)
\end{aligned}
$$

Roll a die
Observe a radioactive nucleus for a time t

$$
\left(\text { success }=\text { decays, } \mathrm{p}=1-e^{-\lambda \cdot t} \approx \lambda \cdot t\right)
$$

ba

Binomial distribution

The question to address is:
Let us consider an honest die and define: success=a six.
What is the probability to obtain x successes after n trials (i.e. n rolls)

$$
P(x)=\underbrace{p \cdot p \cdot p \ldots \ldots \cdot p}_{x} \cdot \underbrace{(1-p) \cdot(1-p) \ldots \ldots(1-p)}_{n-p}=p^{x} \cdot(1-p)^{n-x}
$$

This is the probability of x consecutive successes and $n-x$ consecutive failures

$$
P(x)=\frac{n!}{(n-x)!\cdot x!} \cdot p^{x} \cdot(1-p)^{n-x}
$$

Binomial distribution

Let us calculate mean value and variance for the binomial distribution

$$
\begin{gathered}
\bar{x}=\sum_{k=0}^{n} x \cdot P(x)=n \cdot p \\
\sigma^{2}=\sum_{k=0}^{n}(x-\bar{x})^{2} \cdot P(x)=n \cdot p \cdot(1-p)
\end{gathered}
$$

AIt

ARDENT

Binomial distribution

Toss a coin $\quad \bar{x}=n \cdot p=n \cdot 1 / 2$

$$
\begin{aligned}
\sigma^{2} & =n \cdot p \cdot(1-p)=n \cdot 1 / 4 \\
\sigma^{2} & =n \cdot p \cdot(1-p)=n \cdot 5 / 36
\end{aligned}
$$

Observe a radioactive nucleus for a time t (and assuming n constant)

$$
\text { (success }=\text { decays, } \mathrm{p}=1-e^{-\lambda \cdot t} \approx \lambda \cdot t \text {) }
$$

$\bar{x}=\sum_{k=0}^{n} x \cdot P(x)=n \cdot p=n \cdot \lambda \cdot t$

$$
A=\frac{\bar{x}}{t}=n \cdot \lambda
$$

$$
\sigma^{2}=\sum_{k=0}^{n}(x-\bar{x})^{2} \cdot P(x)=n \cdot p \cdot(1-p)=n \cdot \lambda \cdot t \cdot(1-\lambda \cdot t)
$$

Poisson distribution

$$
P(x)=\frac{n!}{(n-x)!\cdot x!} \cdot p^{x} \cdot(1-p)^{n-x}
$$

$\mathrm{p} \ll 1 \quad \lambda \cdot t \ll 1$
The observation time much lower than the decay time

$$
P(x)=\frac{(p \cdot n)^{x} \cdot e^{-p \cdot n}}{x!}
$$

Poisson distribution

$$
P(x)=\frac{n!}{(n-x)!\cdot x!} \cdot p^{x} \cdot(1-p)^{n-x}
$$

$\mathrm{p} \ll 1 \quad \lambda \cdot t \ll 1$
The observation time much lower than the decay time

$$
P(x)=\frac{(p \cdot n)^{x} \cdot e^{-p \cdot n}}{x!}=\frac{(\bar{x})^{x} \cdot e^{-\bar{x}}}{x!}
$$

AIT 管昜

Poisson distribution

$$
\begin{gathered}
P(x)=\frac{(p \cdot n)^{x} \cdot e^{-p \cdot n}}{x!}=\frac{(\bar{x})^{x} \cdot e^{-\bar{x}}}{x!} \\
\bar{x}=\sum_{k=0}^{n} x \cdot P(x)=n \cdot p \\
\sigma^{2}=\sum_{k=0}^{n}(x-\bar{x})^{2} \cdot P(x)=n \cdot p \\
\sigma^{2}=\bar{\chi}
\end{gathered}
$$

ARDENT

Poisson distribution

Gauss distribution

$$
\begin{aligned}
& P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}} \\
& P(x)=\frac{1}{\sqrt{2 \pi \bar{x}}} e^{-\frac{(x-\bar{x})^{2}}{2 \bar{x}}}
\end{aligned}
$$

Discrete (Poisson)

$$
\sum_{x=x 1}^{x 2} P(x)=\begin{aligned}
& \text { Probability of } \\
& \text { observing } \\
& \text { value of } x \text { in the } \\
& \text { range } x_{1}-x_{2}
\end{aligned} a
$$

$$
P(x)=\text { probability }
$$

Continuous (Gauss)

$$
\int_{x 1}^{x 2} P(x) d x=\begin{aligned}
& \text { Probability of } \\
& \text { observing } \\
& \text { value of } x \text { in the } \\
& \text { range } x_{1}-x_{2}
\end{aligned} \mathrm{a}
$$

$P(x)=$ probability density

ARDENT
 Gaussian confidence intervals

$\operatorname{Prob}\left(x_{-} \leq x \leq x_{+}\right)=\int_{x_{-}}^{x_{+}} p(x) d x=C$
We say:
x lies in the interval $\left[\mathrm{x}_{-}, \mathrm{x}_{+}\right]$with confidence C

 $\mathrm{FAU}=\sqrt{\boldsymbol{7 /}}$ HOUSTON GUOIT wiverastyo

Gaussian confidence intervals

- $\mathrm{P}(\mathrm{x})=$ Gaussian distribution with mean μ and variance σ^{2} (σ is the standard deviation):
- some examples of confidence intervals:
- $\mathrm{x} \pm=\mu \pm \mathrm{k} \sigma \mathrm{k}=1$

C = 68\%

- $x \pm=\mu \pm k \sigma \quad k=2 \quad C=95.4 \%$
- $\mathrm{x} \pm=\mu \pm \mathrm{ko} \mathrm{k}=1.64 \mathrm{C}=90 \%$
- $\mathrm{x} \pm=\mu \pm \mathrm{k} \sigma \mathrm{k}=1.96 \mathrm{C}=95 \%$ k is the coverage factor

ba

Poisson distribution

$\sigma^{2}=\bar{x}$

x2 test

- This test is used to compare an experimental distribution to a theoretical distribution
$F(x)$ frequency distribution

$P(x)$ probability distribution

AIT 管等 1 ba
$F(x)$ frequency distribution

$P(x)$ probability distribution

Iba

x2 test

AIT 際等 1 ba

x2 test

$\chi^{2}=\sum_{i=1}^{N} \frac{\left[\left(n F\left(x_{i}\right)-n P\left(x_{i}\right)\right]^{2}\right.}{\left(\sigma\left[n F\left(x_{i}\right)\right]\right)^{2}} \approx \sum_{i=1}^{N} \frac{\left(\sigma\left[n F\left(x_{i}\right)\right]\right)^{2}}{\left(\sigma\left[n F\left(x_{i}\right)\right]\right)^{2}} \approx N$

$$
\chi^{2}=\langle v\rangle=\langle N-c\rangle
$$

$v=$ degree of freedom $\mathrm{c}=$ constraint
$\mathrm{c}=2$ for a Poisson distribution
c=3 for a Gauss distribution

Reduced $\chi 2$

$$
\chi_{r}^{2}=\frac{\chi^{2}}{v}=<1>
$$

If the $\chi_{r}{ }^{2} \ll 1$ the experimental distribution is «too close» to the target distribution

If the $\chi_{r}{ }^{2} \gg 1$ the experimental distribution is «too far» from the target distribution

AIT 路鹃 (ba

x2 test

x2 test

The χ^{2} can be evaluated without the $F(x)$ distribution Let us consider a series of n measurements x_{i} (counts taken in 1 minute) with a mean value X and an experimental variance $\sigma^{2}(X)$ and let us suppose a Poisson distribution

$$
X=\sigma^{2}(X) \quad \chi^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-X\right)^{2}}{X}=\frac{(n-1) s^{2}}{X}=<(n-1)>
$$

s^{2} best estimate of the variance

x2 N.B.

The χ^{2} test holds for raw data only!

	Count (60s)	CPS
	31	
	30	0.52
	36	0.50
	25	0.60
	24	0.42
	33	0.40
	38	0.55
	27	0.63
	22	0.45
	35	0.37
reduced chi^2	0.99	0.58

If a Poisson event happens at the time t_{0}, what is the probability $\mathrm{P}(\mathrm{t})$ to obtain another Poisson event at the time $\mathrm{t}_{1}+\Delta \mathrm{t}$.

$P(t) d t=\left(\right.$ prob. of no event in the interval $\left.t_{0}-t_{1}\right) \times$ (probability of an event in the time interval Δt
Let us call r the number of events per second (i.e. the countrate of a deterctor)

ARDENT Poisson distribution in a time domain

$P(t) d t=P(0) \times r d t$

$$
P(x)=\frac{(p \cdot n)^{x} \cdot e^{-p \cdot n}}{x!}=\frac{(\bar{x})^{x} \cdot e^{-\bar{x}}}{x!}
$$

$$
P(0)=\frac{(r t)^{0} \cdot e^{-r t}}{0!}=e^{-r t}
$$

$P(t) d t=r e^{-r t} d t$

ARDENT Poisson distribution in a time domain

$P(t) d t=r e^{-r t} d t$

$$
\bar{t}=\frac{\int_{0}^{\infty} t P(t) d t}{\int_{0}^{\infty} P(t) d t}=\frac{\int_{0}^{\infty} t r e^{-r t} d t}{\int_{0}^{\infty} r e^{-r t} d t}=\frac{1}{r}
$$

AIT 儆 1 Ba
HOUSTON GUOIT
wwitesirof

Uncertainty assessement

Uncertainty: parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand

Model

$$
Y=\left(X_{1}-X_{2}\right) \cdot \frac{X_{5} \cdot X_{7} \cdot \ldots . . X_{N-1}}{X_{6} \cdot X_{8} \cdot \ldots . . X_{N}}=\left(X_{1}-X_{2}\right) \cdot W
$$

X_{1} gross signal
X_{2} background signal
X_{5} to X_{N} correction factors (calibration, environmental parameters etc.)
 JABLUTRON \cap İ

FAU $=$ 5 HOUSTON GUOIT

Uncertainty assessement

$$
Y=\left(X_{1}-X_{2}\right) \cdot \frac{X_{5} \cdot X_{7} \cdot \ldots . . X_{N-1}}{X_{6} \cdot X_{8} \cdot \ldots . . X_{N}}=\left(X_{1}-X_{2}\right) \cdot W
$$

We have:

- to assess the uncertainty of every single input variable and the associated probability distribution.
- To compose all the uncertainties obtain the uncertainty associated with y (combined uncertainty $u_{c}(y)$)
- To evaluate the probability distribution associated with y

MIND to check the correlation of the input variables

ARDENT
 Uncertainty assessement

ISO/IEC GUIDE 98-3:2008 Guide to the expression of uncertainty in measurement

Type A evaluation of standard uncertainty: are founded on frequency distributions.
Type B evaluation of standard uncertainty: are founded on a priori distributions.

The standard uncertainty is indicated with the letter u (low case)

Uncertainty assessement

Type A evaluation of standard uncertainty

$$
\bar{q}=\frac{1}{n} \sum_{k=1}^{n} q_{k} \quad s^{2}\left(q_{k}\right)=\frac{1}{n-1} \sum_{j=1}^{n}\left(q_{j}-\bar{q}\right)^{2} \quad s^{2}(\bar{q})=\frac{s^{2}\left(q_{k}\right)}{n}
$$

MIND that you can use this kind of assessment if you are reasonably sure that the random variable has a Gaussian distribution.

Uncertainty assessement

Type B evaluation of standard uncertainty

- previous measurement data;
- experience with or general knowledge of the behaviour and properties of relevant materials and instruments;
- manufacturer's specifications;
- data provided in calibration and other certificates;
- uncertainties assigned to reference data taken from handbooks.

Examples of Type B evaluation

If I have only 3 repeated measurements of the same quantity the experimental standard deviation is meaningless. One technique is to define «a priori» a reasonable probability distribution

$$
\sigma^{2}=\int_{-\infty}^{+\infty} p(x)(x-\bar{x})^{2} d x
$$

$u\left(x_{i}\right)=\frac{0.50}{\sqrt{6}}=0.20 u . a$.

Examples of Type B evaluation

I have only 2 repeated measurements of the same quantity

$$
\begin{gathered}
\sigma^{2}=\int_{-\infty}^{+\infty} p(x)(x-\bar{x})^{2} d x \\
u\left(x_{i}\right)=\frac{a}{\sqrt{3}}
\end{gathered}
$$

JABLOTRON Mi.am (a)
$\mathrm{FAU}=$ 5 HOUSTON 6UOIT wioverifion

Examples of Type B evaluation

Reading of a digital instrument, for instance a voltmeter

$\mathrm{V}=1.5 \quad$ resolution 0.1 V
It can be assumed V in the range

$$
1.45-1.55
$$

Examples of Type B evaluation

Another possibility is a trapezoidal distribution

$$
u\left(x_{i}\right)=\frac{a \sqrt{1+\beta^{2}}}{\sqrt{6}}
$$

$$
\begin{gathered}
\sigma^{2}=\int_{-\infty}^{+\infty} p(x)(x-\bar{x})^{2} d x \\
2 b=2 a \beta \\
0 \leq \beta \leq 1
\end{gathered}
$$

Examples of Type B evaluation

The digital indication oscillates between

$\mathrm{V}=1.5$ and $\mathrm{V}=1.7$
1.45-1.55 1.65-1.75 Resol. 0.1V

It can be assumed
Vmean $=1.6 \mathrm{~V}$
$\mathrm{b}=0.1 \mathrm{~V}$ (oscillation)
$a=0.05 \mathrm{~V}$ (resolution)

AIT 閪等 1 ba

Examples of Type B evaluation

A U shaped distribution is the typical distribution of the temperature in an air-conditioned lab. Usually the chiller starts and stops according to a temperature sensor. This causes a sinusoidal behavior of the temperature

$$
\begin{gathered}
\sigma^{2}=\int_{-\infty}^{+\infty} p(x)(x-\bar{x})^{2} d x \\
p(x)=\frac{1}{\pi} \frac{1}{\sqrt{a^{2}-x^{2}}} \\
u\left(x_{i}\right)=\frac{a}{\sqrt{2}}
\end{gathered}
$$

ba

Examples of Type B evaluation

Uncertainty associated to the calibration factor

Usually the calibration factor is given with an associated uncertainty (if the calibration lab is honest).

But sometimes the calibration factor and the uncertainty cannot be used "as they are" because it's impossible to reproduce the same experimental conditions of the calibration lab.

Let's consider the following problem: I have to measure the air kerma in a photon field with a survey meter. I have the instrument calibration factor for different photon energies, but I don't know exactly the energy distribution of the photon field I'm going to measure.

JABLOTRON Mi
FAU"
© 7
HOUSTON GUOIT

Uncertainty associated to the calibration factor

Beam direction

Houston

Uncertainty associated to the calibration factor

Sensitivity in term of air kerma
AIT 間掲 (ba
Hoưsion
GUOIT
Muversit of

Uncertainty associated to the calibration factor

I can suppose that the photon energy is in the range $80 \mathrm{keV}-200 \mathrm{keV}$

AIT

Uncertainty associated to the calibration factor

$$
\begin{aligned}
& 0,92=\bar{S}=\frac{1}{n} \sum_{i=1}^{n} S_{i} \\
& 0,93=\overline{\bar{S}}=\frac{\mathrm{max}-\mathrm{min}}{2} \\
& u(\bar{S})=\frac{0,14}{\sqrt{3}}=0,0807
\end{aligned}
$$

$$
u_{\%}(N)=u_{\%}(\bar{S})=\frac{u(\bar{S})}{S}=\frac{0,0807}{0,92}=8,8 \%
$$ иasuroon mi.am =

Uncertainty associated to the calibration factor

This last example is important because it shows that the important uncertainties arise from an incomplete definition of the quantity under measurement (energy distribution).
For "on field" measurements it is important, and difficult, to assess these kinds of uncertainties. The researcher experience plays a key role.
The main issues are:

- Find out all the uncertainty sources
- Define the most reasonable probability distributions

AIT 璒恽 Ba
JABLJTRON Mi OM (A)
FAU"
G7

ARDENT
 Uncertainty propagation

Uncertainty propagation

$y=f(x) \quad$ countrate $=\frac{\text { counts }}{t}$

$$
u^{2}(y)=\left(\frac{\partial(f(x)}{\partial x}\right)^{2} u^{2}(x)
$$

$$
u^{2}(\text { counrate })=\frac{u^{2}(\text { counts })}{t^{2}}
$$

In case of uncorrelated input variables

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& u_{\mathrm{C}}^{2}(y)=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}\left(x_{i}\right)
\end{aligned}
$$

ba jabiotron mi amonision

What is the probability distribution of y

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& u_{\mathrm{C}}^{2}(y)=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}\left(x_{i}\right)
\end{aligned}
$$

Central limit theorem (CLT) states that, given certain conditions, the mean of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed

Uncertainty propagation

The Central Limit Theorem is significant because it shows the very important role played by the variances of the probability distributions of the input quantities. It implies that the convolved distribution converges towards the normal distribution as the number of input quantities contributing to the variance of Y increases and that the convergence will be more rapid the closer the values of $\left(\frac{\partial(f(x)}{\partial x}\right)^{2} \sigma^{2}(x)$ are to each other (equivalent in practice to each input estimate $x i$ contributing a comparable uncertainty to the uncertainty of the estimate y of the measurand Y)

AIT 烱高 1 ba JABLOTRON Mi an ourcui
$\mathrm{FAU}=$ $\boxed{\pi}$

Uncertainty propagation

Data are usually expressed in term of expanded uncertainty U (upper case).

The expanded uncertainty U is obtained by multiplying the combined standard uncertainty $u_{c}(y)$ by a coverage factor $k: U=k u_{c}(y)$

The value of the coverage factor k is chosen on the basis of the level of confidence required of the interval $y-U$ to $y+U$.

The standard choice is a 95% level of confidence. If a normal distribution is assumed, this means $K=2$

FAU $1 \times$
$\sqrt{71}$

Uncertainty propagation

Let's get back to the air kerma measurement in a photon field with a survey meter.

Correlation among input variables

$$
y=f\left(x_{1}, x_{2}\right)
$$

Uncorrelated variables

$$
x_{1} \quad x_{2}
$$

$$
u^{2}(y)=\left(\frac{\partial f}{\partial x_{1}}\right)^{2} u^{2}\left(x_{1}\right)+\left(\frac{\partial f}{\partial x_{2}}\right)^{2} u^{2}\left(x_{2}\right)
$$

Correlation among input variables

$$
y=f\left(x_{1}, x_{2}\right)
$$

Correlated variables

$$
u^{2}(y)=\left(\frac{\partial f}{\partial x_{1}}\right)^{2} \cdot u^{2}\left(x_{1}\right)+\left(\frac{\partial f}{\partial x_{2}}\right)^{2} \cdot u^{2}\left(x_{2}\right)+2 \cdot \frac{\partial f}{\partial x_{1}} \cdot \frac{\partial f}{\partial x_{2}} \cdot u\left(x_{1}, x_{2}\right)
$$

Correlated input variables

$$
\begin{gathered}
u^{2}(x)=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
u\left(x_{1}, x_{2}\right)=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{1 i}-\bar{x}_{1}\right) \cdot\left(x_{2 i}-\bar{x}_{2}\right) \\
u^{2}(\bar{x})=\frac{1}{n \cdot(n-1)} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
u\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{1}{n \cdot(n-1)} \cdot \sum_{i=1}^{n}\left(x_{1 i}-\bar{x}_{1}\right) \cdot\left(x_{2 i}-\bar{x}_{2}\right)
\end{gathered}
$$

ARDENT

Correlated input variables

Correlation coefficient

Term of covariance

$$
2 \cdot \frac{\partial f}{\partial x_{1}} \cdot \frac{\partial f}{\partial x_{2}} \cdot u\left(x_{1}\right) \cdot u\left(x_{2}\right) \cdot r\left(x_{1}, x_{2}\right)
$$

$$
-1<r\left(x_{1}, x_{2}\right)<1
$$

AIT

Correlated input variables

$$
\begin{gathered}
r\left(x_{1}, x_{2}\right)=1 \quad \text { Positive correlation } \\
r\left(x_{1}, x_{2}\right)=0 \quad \text { Uncorrelated variables } \\
r\left(x_{1}, x_{2}\right)=-1 \quad \text { Negative correlation } \\
u\left(x_{1}, x_{2}\right)=\frac{1}{n-1} \cdot \sum_{i=1}^{x_{1}}\left(x_{1 i}-\bar{x}_{1}\right) \cdot\left(x_{2 i}-\bar{x}_{2}\right)
\end{gathered}
$$

Experimental evaluation of the covariance (type A evaluation)

$$
s(\bar{q}, \bar{r})=\frac{1}{n(n-1)} \sum_{k=1}^{n}\left(q_{k}-\bar{q}\right)\left(r_{k}-\bar{r}\right)
$$

s is an estimator of the covariance
ba

Correlation of input variables

A type B evaluation of the correlation can be done by observing the a variation δ_{1} in x_{1} produces a variation δ_{2} in x_{2}. The correlation coefficient can be evaluated as follows:

$$
r\left(x_{1}, x_{2}\right)=\frac{u\left(x_{1}\right) \cdot \delta_{2}}{u\left(x_{2}\right) \cdot \delta_{1}}
$$

AIT 際等 Ba

Correlation of input variables

Sometimes it is possible to remove the correlation modifying the measuring model.

$$
y=f\left(x_{1}(t), x_{2}(t)\right) \quad \Rightarrow \quad y=g\left(x_{1}, x_{2}, t\right)
$$

ARDENT
 Uncertainty propagation

In case of correlated input variables

$$
\begin{gathered}
y=f\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
u_{\mathrm{c}}^{2}(y)=\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u\left(x_{i}, x_{j}\right)=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}\left(x_{i}\right)+2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u\left(x_{i}, x_{j}\right)
\end{gathered}
$$

ISO/IEC GUIDE 98-3:2008H. 4 Measurement of activity

Problem: the unknown radon activity concentration in a water sample is determined by liquid-scintillation counting against a radon-in-water standard sample
C_{S}, C_{B}, C_{x} are the number of counts recorded in the dead-time-corrected counting intervals $T_{0}=60 \mathrm{~min}$ for the standard, blank, and sample vials, respectively.
t_{s}, t_{B}, t_{x} are the times from the reference time $t=0$ to the midpoint of the dead-time-corrected counting intervals $T_{0}=60 \mathrm{~min}$ for the standard, blank, and sample vials, respectively

ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity

The observed counts may be expressed as

$$
\begin{aligned}
& C_{\mathrm{S}}=C_{\mathrm{B}}+\varepsilon A_{\mathrm{S}} T_{0} m_{\mathrm{S}} \mathrm{e}^{-\lambda t_{\mathrm{S}}} \\
& C_{x}=C_{\mathrm{B}}+\varepsilon A_{x} T_{0} m_{x} \mathrm{e}^{-\lambda t_{x}}
\end{aligned}
$$

is the liquid scintillation detection efficiency for ${ }^{222} R n$ for a given source composition, assumed to be independent of the activity level;
is the activity concentration of the standard at the reference time $t=0$;
is the measurand and is defined as the unknown activity concentration of the sample at the reference time $t=0$;
is the mass of the standard solution;
is the mass of the sample aliquot;
λ

$$
\text { is the decay constant for }{ }^{222} \mathrm{Rn}: \lambda=(\ln 2) / T_{1 / 2}=1,25894 \times 10^{-4} \min ^{-1}\left(T_{1 / 2}=5505,8 \mathrm{~min}\right) \text {. }
$$

AIT 警 1 ba
JABLUTRON

ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity

Table H. 7 - Counting data for determining the activity concentration of an unknown sample

Cycle	Standard		Blank		Sample	
k	t_{S} (min)	C_{S} (counts)	t_{B} (min)	C_{B} (counts)	t_{x} $(\mathrm{~min})$	C_{x} (counts)
1	243,74	15380	305,56	4054	367,37	41432
2	984,53	14978	1046,10	3922	1107,66	38706
3	1723,87	14394	1785,43	4200	1846,99	35860
4	2463,17	13254	2524,73	3830	2586,28	32238
5	3217,56	12516	3279,12	3956	3340,68	29640
6	3956,83	11058	4018,38	3980	4079,94	26356

Example

ISO/IEC GUIDE 98-3:2008H. 4 Measurement of activity

Measuring model

$$
\begin{aligned}
A_{x} & =f\left(A_{\mathrm{S}}, m_{\mathrm{S}}, m_{x}, C_{\mathrm{S}}, C_{x}, C_{\mathrm{B}}, t_{\mathrm{S}}, t_{x}, \lambda\right) \\
& =A_{\mathrm{S}} \frac{m_{\mathrm{S}}}{m_{x}} \frac{\left(C_{x}-C_{\mathrm{B}}\right) \mathrm{e}^{\lambda t_{x}}}{\left(C_{\mathrm{S}}-C_{\mathrm{B}}\right) \mathrm{e}^{\lambda t_{\mathrm{S}}}} \\
& =A_{\mathrm{S}} \frac{m_{\mathrm{S}}}{m_{x}} \frac{C_{x}-C_{\mathrm{B}}}{C_{\mathrm{S}}-C_{\mathrm{B}}} \mathrm{e}^{\lambda\left(t_{x}-t_{\mathrm{S}}\right)}
\end{aligned}
$$

$A_{x}=f\left(A_{\mathrm{S}}, m_{\mathrm{S}}, m_{x}, R_{\mathrm{S}}, R_{x}\right)=A_{\mathrm{S}} \frac{m_{\mathrm{S}}}{m_{x}} \frac{R_{x}}{R_{\mathrm{S}}}$

$$
\begin{aligned}
& R_{x}=\left[\left(C_{x}-C_{\mathrm{B}}\right) / T_{0}\right] \mathrm{e}^{\lambda t_{x}} \\
& R_{\mathrm{S}}=\left[\left(C_{\mathrm{S}}-C_{\mathrm{B}}\right) / T_{0}\right] \mathrm{e}^{\lambda t_{\mathrm{S}}}
\end{aligned}
$$

Example

ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity

The arithmetic means $\overline{R_{S}}, \overline{R_{x}}$ and \bar{R}, and their experimental standard deviations $\mathrm{s}\left(\overline{R_{S}}\right), \mathrm{s}\left(\overline{R_{x}}\right)$, and $\mathrm{s}(\bar{R})$, are calculated in the usual way:

$$
\bar{q}=\frac{1}{n} \sum_{k=1}^{n} q_{k}
$$

$$
\begin{array}{r}
R=R_{x} / R_{\mathrm{S}}=\left[\left(C_{x}-C_{\mathrm{B}}\right) /\left(C_{\mathrm{S}}-C_{\mathrm{B}}\right)\right] \mathrm{e}^{\lambda\left(t_{x}-t_{\mathrm{S}}\right)} \\
R_{x}=\left[\left(C_{x}-C_{\mathrm{B}}\right) / T_{0}\right] \mathrm{e}^{\lambda t_{x}} \\
R_{\mathrm{S}}=\left[\left(C_{\mathrm{S}}-C_{\mathrm{B}}\right) / T_{0}\right] \mathrm{e}^{\lambda t_{\mathrm{S}}}
\end{array}
$$

$$
s^{2}\left(q_{k}\right)=\frac{1}{n-1} \sum_{j=1}^{n}\left(q_{j}-\bar{q}\right)^{2}
$$

Example

ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity

The correlation coefficient $\mathrm{r}\left(\overline{R_{S}}, \overline{R_{x}}\right)$ is assessed with a type A calculation

$$
\begin{array}{ll}
s(\bar{q}, \bar{r})=\frac{1}{n(n-1)} \sum_{k=1}^{n}\left(q_{k}-\bar{q}\right)\left(r_{k}-\bar{r}\right) & R_{x}=\left[\left(C_{x}-C_{\mathrm{B}}\right) / T_{0}\right] \mathrm{e}^{\lambda t_{x}} \\
r\left(x_{i}, x_{j}\right)=\frac{u\left(x_{i}, x_{j}\right)}{u\left(x_{i}\right) u\left(x_{j}\right)} & R_{\mathrm{S}}=\left[\left(C_{\mathrm{S}}-C_{\mathrm{B}}\right) / T_{0}\right] \mathrm{e}^{\lambda t_{\mathrm{S}}}
\end{array}
$$

ISO/IEC GUIDE 98-3:2008H. 4 Measurement of activity

There are two ways to face the problem:

With correlation

$$
A_{x}=A_{s} \frac{m_{S} \overline{R_{x}}}{m_{x} \overline{R_{S}}}
$$

without correlation

$$
A_{x}=A_{s} \frac{m_{S}}{m_{x}} \bar{R}
$$

ISO／IEC GUIDE 98－3：2008H．4 Measurement of activitv

Table H． 8 －Calculation of decay－corrected and background－corrected counting rates

Cycle k	$\begin{gathered} R_{X} \\ \left(\min ^{-1}\right) \end{gathered}$	$\begin{gathered} R_{\mathrm{S}} \\ \left(\min ^{-1}\right) \end{gathered}$	$\begin{gathered} t_{x}-t_{\mathrm{S}} \\ (\mathrm{~min}) \end{gathered}$	$R=R_{X} / R_{\mathrm{S}}$
1	652，46	194，65	123，63	3，352 0
2	666，48	208，58	123，13	3，195 3
3	665，80	211，08	123，12	3，154 3
4	655，68	214，17	123，11	3，061 5
5	651，87	213，92	123，12	3，047 3
6	623，31	194，13	123，11	3，210 7
	$\begin{gathered} \bar{R}_{x}=652,60 \\ s\left(\bar{R}_{x}\right)=6,42 \\ s\left(\bar{R}_{x}\right) / \bar{R}_{x}=0,98 \times 10^{-2} \end{gathered}$	$\begin{gathered} \bar{R}_{\mathrm{S}}=206,09 \\ s\left(\bar{R}_{\mathrm{S}}\right)=3,79 \\ s\left(\bar{R}_{\mathrm{S}}\right) / \bar{R}_{\mathrm{S}}=1,84 \times 10^{-2} \end{gathered}$		$\begin{gathered} \bar{R}=3,170 \\ s(\bar{R})=0,046 \\ s(\bar{R}) / \bar{R}=1,44 \times 10^{-2} \end{gathered}$
	$\begin{array}{r} \bar{R}_{x} / \\ u\left(\bar{R}_{x}\right. \\ u\left(\bar{R}_{x} / \bar{R}_{\mathrm{S}}\right) /\left(\bar{R}^{2}\right. \end{array}$	$\begin{aligned} & 0,167 \\ & =1,42 \times 10^{-2} \end{aligned}$		
Correlation coefficient				
$r\left(\bar{R}_{x}, \bar{R}_{\mathrm{S}}\right)=0,646$				

नIII 月镋写（ba

AY／
HOUSTON GUUII

Example

ISO/IEC GUIDE 98-3:2008H. 4 Measurement of activity

Result using the approach with correlation

$$
\begin{gathered}
A_{x}=A_{\mathrm{S}} \frac{m_{\mathrm{S}}}{m_{x}} \frac{\bar{R}_{x}}{\bar{R}_{\mathrm{S}}}=0,4300 \mathrm{~Bq} / \mathrm{g} \\
\frac{u_{\mathrm{c}}^{2}\left(A_{x}\right)}{A_{x}^{2}}=\frac{u^{2}\left(A_{\mathrm{S}}\right)}{A_{\mathrm{S}}^{2}}+\frac{u^{2}\left(m_{\mathrm{S}}\right)}{m_{\mathrm{S}}^{2}}+\frac{u^{2}\left(m_{x}\right)}{m_{x}^{2}}+\frac{u^{2}\left(\bar{R}_{x}\right)}{\bar{R}_{x}^{2}}+\frac{u^{2}\left(\bar{R}_{\mathrm{S}}\right)}{\bar{R}_{\mathrm{S}}^{2}}-2 r\left(\bar{R}_{x}, \bar{R}_{\mathrm{S}}\right) \frac{u\left(\bar{R}_{x}\right) u\left(\bar{R}_{\mathrm{S}}\right)}{\bar{R}_{x} \bar{R}_{\mathrm{S}}} \\
u_{\mathrm{c}}\left(A_{x}\right)=0,0083 \mathrm{~Bq} / \mathrm{g}
\end{gathered}
$$

AIT 庴恽 1 Ba

Example

ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity

Result using the approach without correlation

$$
\begin{gathered}
A_{x}=A_{\mathrm{S}} \frac{m_{\mathrm{S}}}{m_{x}} \bar{R}=0,4304 \mathrm{~Bq} / \mathrm{g} \\
\frac{u_{\mathrm{C}}^{2}\left(A_{x}\right)}{A_{x}^{2}}=\frac{u^{2}\left(A_{\mathrm{S}}\right)}{A_{\mathrm{S}}^{2}}+\frac{u^{2}\left(m_{\mathrm{S}}\right)}{m_{\mathrm{S}}^{2}}+\frac{u^{2}\left(m_{x}\right)}{m_{x}^{2}}+\frac{u^{2}(\bar{R})}{\bar{R}^{2}} \\
u_{\mathrm{C}}\left(A_{x}\right)=0,0084 \mathrm{~Bq} / \mathrm{g}
\end{gathered}
$$

Example

ISO/IEC GUIDE 98-3:2008H.4 Measurement of activity

Comparison of the two approaches

With correlation

$$
A_{x}=A_{\mathrm{S}} \frac{m_{\mathrm{S}}}{m_{x}} \frac{\bar{R}_{x}}{\bar{R}_{\mathrm{S}}}=0,4300 \mathrm{~Bq} / \mathrm{g}
$$

$$
u_{\mathrm{c}}\left(A_{x}\right)=0,0083 \mathrm{~Bq} / \mathrm{g}
$$

without correlation

$$
A_{x}=A_{\mathrm{S}} \frac{m_{\mathrm{S}}}{m_{x}} \bar{R}=0,4304 \mathrm{~Bq} / \mathrm{g}
$$

$$
u_{\mathrm{c}}\left(A_{x}\right)=0,0084 \mathrm{~Bq} / \mathrm{g}
$$

ba

Characteristics limits

 decision threshold and detection limitSuppose we measure the activity in an unknown sample:

- the "decision threshold" gives a decision on whether or not the physical effect quantified by the measurand is present;
- the "detection limit" indicates the smallest true value of the measurand which can still be detected; this gives a decision on whether or not the measurement procedure satisfies the requirements and is therefore suitable for the intended measurement purpose

FAU $=$ $\sqrt{7 /}$ HOUSTON GUOIT

decision threshold

Let us suppose to know, « a priori» that in the sample there is no activity. The problem is: define a threshold "decision threshold" that permits to define a probability of false positive.

decision threshold

Measuring model

$$
y=\left(x_{1}-x_{2}\right) \cdot w=\left(\frac{N_{S}}{T}-\frac{N_{B}}{T}\right) \cdot w
$$

$$
u(y)=\sqrt{w^{2} \cdot\left(u^{2}\left(x_{1}\right)+u^{2}\left(x_{2}\right)\right)+y^{2} \cdot u_{r e l}^{2}(w)} \quad u^{2}\left(x_{1}\right)=\frac{N_{S}}{T^{2}}
$$

No activity in the sample $y=0 ; x_{1}=x_{2}=$ background

$$
u^{2}\left(x_{2}\right)=\frac{N_{B}}{T^{2}}
$$

$$
u(0)=w \cdot \sqrt{\left(u^{2}\left(x_{1}\right)+u^{2}\left(x_{2}\right)\right)}=w \cdot \sqrt{2 \cdot u^{2}\left(x_{2}\right)}
$$

decision threshold

Critical level

Si presuppone $y=0$

$$
\begin{aligned}
& u(0)=w \cdot \sqrt{2 \cdot u^{2}\left(x_{2}\right)} \\
& L c=1.645^{*} u(0)
\end{aligned}
$$

Lc Critical level or decision threshold defines the percentage of false positive
It depends on the uncertainty $u\left(x_{2}\right)$ of the background measurement

detection limit LLD (Lower limit of detection)

detection limit
ARDENT LLD (Lower limit of detection)

Let's express the uncertainty as a function of the measurand

$$
\begin{gathered}
y=\left(x_{1}-x_{2}\right) \cdot w=\left(\frac{N_{S}}{T}-\frac{N_{B}}{T}\right) \cdot w \quad u(y)=\sqrt{w^{2} \cdot\left(u^{2}\left(x_{1}\right)+u^{2}\left(x_{2}\right)\right)+y^{2} \cdot u_{r e l}^{2}(w)} \\
x_{1}=g(y) \\
u(y)=h(y) \\
x_{1}=\frac{y}{w}+x_{2} \quad \text { e } u(y)=\sqrt{w^{2} \cdot\left(\frac{y}{w \cdot T}+2 \cdot u^{2}\left(x_{2}\right)\right)+y^{2} \cdot u_{r e l}^{2}(w)} \\
u^{2}\left(x_{1}\right)=\frac{N_{S}}{T^{2}} \quad u^{2}\left(x_{2}\right)=\frac{N_{B}}{T^{2}}
\end{gathered}
$$

detection limit LLD (Lower limit of detection)

LLD ($\mathrm{y}^{\#}$) Can be calculated as follows:
$y^{\#}=L c+k \cdot u\left(y^{\#}\right)=L c+k \cdot \sqrt{w^{2} \cdot\left(\frac{y^{\#}}{w \cdot T}+2 \cdot u^{2}\left(x_{2}\right)\right)+y^{\#^{2}} \cdot u_{r e l}^{2}(w)}$

Where k in the coverage factor coresponding to a given probability of false negative. $K=1.645->p=5 \%$

The equation can be solved in an iterative way.
LLD depends on x_{2} and W
AIT 関等 1 ba

detection limit LLD (Lower limit of detection)

High $u_{\text {rel }}^{2}(w)$

Low
$u_{r e l}^{2}(w)$

$$
y^{\#}=y^{*}+k \cdot \sqrt{w^{2} \cdot\left(\frac{y^{\#}}{w \cdot T}+2 \cdot u^{2}\left(x_{2}\right)\right)+y^{\#^{2}} \cdot u_{r e l}^{2}(w)}
$$

AIT

Benford's law

first digit distribution

We have the following problem: we need to calibrate a survey meter for X and gamma radiation in a calibration lab. In order to fit our budget we can get 1 point for every full scale.
e.g.

One point in the range $0-10 \mu \mathrm{~Sv}(10 \mu \mathrm{~Sv}$ full scale)
One point in the range $0-100 \mu \mathrm{~Sv}(100 \mu \mathrm{~Sv}$ full scale) Etc.

AIT 庴葲 1 Ba JABLOTRON Mi ourcme
$F A=\overline{7 /}$

Benford's law

 first digit distributionHow can we choose the calibration point?
e.g. in the range $0-10 \mu \mathrm{~Sv}$ which is the better choice?
$1 \mu \mathrm{~Sv}$ or $2 \mu \mathrm{~Sv}$.....or $9 \mu \mathrm{~Sv}$. In other words the calibration point must start with the digit 1 or 2or 9 .
We can give an answer by addressing another question:
During the routine on field measurements which is the first digit more probable to obtain?
One could say: every digit has the same probability, but......

Benford's law

first digit distribution

....this is not true!!!
Benford's Law (which was first mentioned in 1881 by the astronomer Simon Newcomb) states that if we randomly select a number from a table of physical constants or statistical data, the probability of occurrence of the first digit is distributed as follows:

$$
P(d)=\frac{\operatorname{Ln}\left(1+\frac{1}{d}\right)}{\operatorname{Ln}(10)}
$$

Benford's law

first digit distribution

$$
P(d)=\frac{\operatorname{Ln}\left(1+\frac{1}{d}\right)}{\operatorname{Ln}(10)}
$$

Benford's law

first digit distribution

Population of Spanish cities

\square

Benford's law

 first digit distributionTotal number of print materials in US libraries

Leading digit frequency

Benford's law

 first digit distributionFile sizes in the Linux 2.6.39.2 source tree

Leading digit frequency

\square
\square

Benford's law first digit distribution

Distance of stars from Earth in light year Leading digit frequency

\square

Benford's law

 first digit distributionUK government spending May-Sept 2010 Leading digit frequency

\square

Benford's law

 first digit distributionWhat does the Benford's law conceal about nature?

This means that the nature behaves in a logarithmic way

Benford's law first digit distribution

Getting back to the calibration problems, it is better to choose a calibration point in the range:
$1-2 \mu \mathrm{~Sv}$ for the scale $0-10 \mu \mathrm{~Sv}$ $10-20 \mu \mathrm{~Sv}$ for the scale $0-100 \mu \mathrm{~Sv}$

And so on

AIT 管等 1 ba

Benford's law first digit distribution

■ benford
sperim
Let us suppose to measure at one meter from a radiation source a doserate of $9.9 \mu \mathrm{~Sv} / \mathrm{h}$. Let us measure up to 8 meters from the source in steps of 1 cm . According to the $1 / \mathrm{r}^{2}$ law the first digit is distributed according to the Benford law

Bibliography

- An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements by John R. Taylor
- Radiation detection and measurements Glenn Knoll
- ISO/IEC GUIDE 98-3:2008(E) Guide to the expression of uncertainty in measurement
- ISO 11929 (2010) Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation - Fundamentals and application

AIT 庴學 Ba

$\mathrm{FAU}=$
$\sqrt{7 /}$

