Kai - who is this guy?

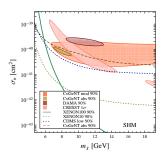
Kai Schmidt-Hoberg

CERN Introduction

...where do I come from...

...where do I come from...

My scientific life in a nutshell:



...now here at CERN... thanks for having me!

Current Interests

- Dark matter
 - Recent hints for light dark matter?
 - Can all hints be made compatible by changing particle physics/astrophysics?

- (SUSY) phenomenology
 - Higgs finally found! ⇒ the hierarchy problem exists!?
 - The Higgs mass is 125 GeV!

The GNMSSM

The GNMSSM: mainly with Graham Ross and Florian Staub

$$\mathcal{W}_{\text{GNMSSM}} = \underbrace{\mathcal{W}_{\text{Yukawa}} + \lambda \, S \, H_u \, H_d + \frac{1}{3} \kappa \, S^3}_{\text{NMSSM}} + \mu H_u H_d + \frac{1}{2} \mu_{\text{S}} S^2$$

does not look very clever...

The GNMSSM

The GNMSSM: mainly with Graham Ross and Florian Staub

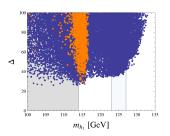
$$\mathcal{W}_{\text{GNMSSM}} = \underbrace{\mathcal{W}_{\text{Yukawa}} + \lambda \, S \, H_u \, H_d + \frac{1}{3} \kappa \, S^3}_{\text{NMSSM}} + \underbrace{\mu H_u H_d + \frac{1}{2} \mu_s S^2}_{\text{NMSSM}}$$

- does not look very clever...
- but: underlying R symmetry which
 - ullet solves the (double) μ problem
 - forbids/suppresses dimension four and five proton decay operators
 - commutes with GUTs
 - allows the Weinberg operator
 - solves the domain wall and tadpole problems of the NMSSM

Additional tree-level contribution to Higgs mass:

$$M_Z^2 \cos^2(2\beta) + \lambda^2 v^2 \sin^2(2\beta) + \text{radiative corrections}$$

Naturalness in the GNMSSM


• Difference to (N)MSSM? Look at naturaleness Barbieri, Giudice

Naturalness in the GNMSSM

- Difference to (N)MSSM? Look at naturaleness
 Barbieri, Giudice
- Outcome depends on what is assumed for SUSY breaking
- Simplest case: 'CGNMSSM' with $m_{1/2}, m_0, A_0, \tan \beta, \lambda, \kappa, v_s, \mu_s$.
- Full one/two-loop evaluation with SPHENO

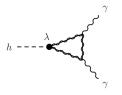
Naturalness in the GNMSSM

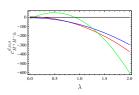
- Difference to (N)MSSM? Look at naturaleness
 Barbieri, Giudice
- Outcome depends on what is assumed for SUSY breaking
- Simplest case: 'CGNMSSM' with $m_{1/2}, m_0, A_0, \tan \beta, \lambda, \kappa, v_s, \mu_s$.
- Full one/two-loop evaluation with SPHENO

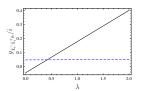
- Low fine-tuning requires small $\tan \beta$ and large λ !
- Other implications of this parameter region?

Enhanced diphoton rate?

- Enhanced diphoton rate?
 At least for another 5 days...
- Two easy options:
 - suppress partial width into bb to increase BR
 - \bullet light charged particles in the loop to increase partial width into $\gamma\gamma$
- H → bb
 H → tt
 H → WW
 H → ZZ


 3 2 -1 0 1 2 3 4 5
 Best fit of \(\sigma_{SMH} \)


m_u = 125 GeV

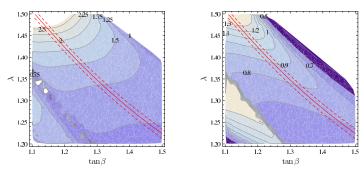

- only option in MSSM: 'light stau scenario' Carena et al
- needs very large $\mu \cdot \tan \beta \Rightarrow$ unnatural, danger of CCB vacuum
- what about H^{\pm} or χ^{\pm} ?

Enhanced diphoton rate?

- Enhanced diphoton rate?
 At least for another 5 days...
- Two easy options:
 - suppress partial width into bb to increase BR
 - light charged particles in the loop to increase partial width into $\gamma\gamma$
- only option in MSSM: 'light stau scenario' Carena et al
- needs very large $\mu \cdot \tan \beta \Rightarrow$ unnatural, danger of CCB vacuum
- what about H^{\pm} or χ^{\pm} ?

L = 125 GeV

Best fit σ/σ_{cм}

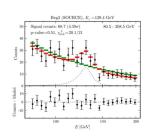

 $H \rightarrow bb$

 $H \rightarrow \tau \tau$

 $H \rightarrow WW$ $H \rightarrow ZZ$

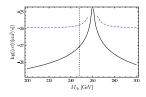
Full Analysis

take into account the Higgs mass, production cross section, ...

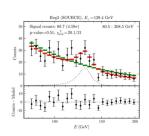


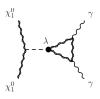
 Enhancement of the diphoton signal by a factor 2 with SM like WW, the correct Higgs mass etc. possible

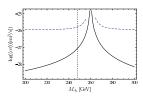
Fermi LAT


• DM annihilation at Fermi?

• charginos show up in similar diagrams as before...




Fermi LAT


• DM annihilation at Fermi?

• charginos show up in similar diagrams as before...

