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QCD at the LHC

Complicated environment, QCD must be understood/modeled as best as
feasible

➠ parton model - beams of
partons

➠ radiation off incoming partons

➠ primary hard scattering
(µ ≃ Q ≫ ΛQCD)

➠ radiation off outgoing partons
(Q > µ > ΛQCD)

➠ hadronization and heavy
hadron decay (µ ≃ ΛQCD)

➠ multiple parton interactions,
underlying event
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The hard process in perturbation theory

The scale of the hard scattering is µ ≫ ΛQCD, so by asymptotic freedom, it can
be treated in perturbation theory, i.e. by expansion in powers of the strong
coupling, αS(µ).

Consider a generic cross section for producing m jets
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How many terms to compute?
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Why NNLO?

LO prediction: order of magnitude estimate, rough shapes of distributions

NLO is mandatory for meaningful normalization and shape predictions

NNLO may be relevant

➠ NLO corrections are large:
◮ Higgs production from gluon

fusion in hadron collisions

➠ for benchmark processes measured
with high experimental accuracy:

◮ αs measurements form e+e−

event shapes
◮ W , Z production
◮ heavy quark hadroproduction

➠ reliable error estimate is needed:

◮ processes relevant for PDF
determination

◮ important background processes

(Anastasiou, Dixon, Melnikov, Petriello,

Phys. Rev. D69 (2004) 094008.)

Gábor Somogyi | Higher order QCD corrections | page 4



NNLO ingredients

A generic m-jet cross section at NNLO involves

➠ Tree-level squared matrix elements
◮ with m + 2 parton kinematics
◮ known from LO calculations
◮ ‘doubly-real’ contribution (RR)

➠ One-loop squared matrix elements
◮ with m + 1 parton kinematics
◮ usually known from NLO calculations
◮ ‘real-virtual’ contribution (RV)

➠ Two-loop squared matrix elements
◮ with m parton kinematics
◮ known for all massless 2 → 2 processes
◮ ‘doubly-virtual’ contribution (VV)
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NNLO ingredients

A generic m-jet cross section at NNLO involves

➠ Tree-level squared matrix elements
◮ with m + 2 parton kinematics
◮ known from LO calculations
◮ ‘doubly-real’ contribution (RR)

➠ One-loop squared matrix elements
◮ with m + 1 parton kinematics
◮ usually known from NLO calculations
◮ ‘real-virtual’ contribution (RV)

➠ Two-loop squared matrix elements
◮ with m parton kinematics
◮ known for all massless 2 → 2 processes
◮ ‘doubly-virtual’ contribution (VV)

Assuming we know the relevant matrix elements, can we use those matrix
elements to compute cross sections?
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The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm .

Doubly-real

◮ dσ
RR
m+2Jm+2

◮ Tree MEs with
m + 2-parton
kinematics

◮ kin. singularities as
one or two partons
unresolved: up to
O(ǫ−4) poles from
PS integration

◮ no explicit ǫ poles

Real-virtual

◮ dσ
RV

m+1Jm+1

◮ One-loop MEs with
m + 1-parton
kinematics

◮ kin. singularities as
one parton
unresolved: up to
O(ǫ−2) poles from
PS integration

◮ explicit ǫ poles up
to O(ǫ−2)

Doubly-virtual

◮ dσ
VV
m Jm

◮ One- and two-loop
MEs with m-parton
kinematics

◮ kin. singularities
screened by jet
function: PS
integration finite

◮ explicit ǫ poles up
to O(ǫ−4)
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The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm .

THE KLN THEOREM

Infrared singularities cancel between real and virtual quantum corrections at the
same order in perturbation theory, for sufficiently inclusive (i.e. IR safe)
observables.

HOWEVER

How to make this cancellation explicit, so that the various contributions can be
computed numerically? Need a method to deal with implicit poles.

Gábor Somogyi | Higher order QCD corrections | page 6



Basics of subtraction

Strategy: rearrange IR singularities between various contributions by
subtracting and adding back suitably defined approximate cross sections.

➠ subtraction terms match the singularity structure of real emission point
wise (in d dimensions) ⇒ phase space integrals over real radiation
rendered convergent

➠ integrated forms of subtraction terms have the same pole structure as
virtual contribution ⇒ explicit ǫ-poles cancel point by point

The construction of a general (i.e. process- and observable-independent)
subtraction algorithm

➠ made possible by the universal structure of IR singularities, embodied in
so-called IR factorization formulae

➠ is not unique, hence several approaches (FKS, dipole, antenna,. . . )

Gábor Somogyi | Higher order QCD corrections | page 7



Subtraction - a caricature

Want to evaluate (at ǫ → 0)

σ =

∫ 1

0
dσR(x) + σV where

dσR(x) = x−1−ǫR(x)

R(0) = R0 < ∞

σV = R0/ǫ+ V

➠ define the counterterm

dσR,A (x) = x−1−ǫR0

➠ use it to reshuffle singularities between R and V contributions

σ =

∫ 1

0

[

dσR(x) − dσR,A (x)
]

ǫ=0
+

[

σV +

∫ 1

0
dσR,A (x)

]

ǫ=0

=

∫ 1

0

[

R(x) − R0

x1+ǫ

]

ǫ=0

+

[

R0

ǫ
+ V −

R0

ǫ

]

ǫ=0

=

∫ 1

0

R(x)− R0

x
+ V

The last integral is finite, computable with standard numerical methods.
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1
]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(

∫

1
dσ

RR,A1
m+2

)

A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1

5. (
∫

1
dσ

RR,A1
m+2 )

A1 regularizes the singly-unresolved limit of
∫

1
dσ

RR,A1
m+2
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Defining a subtraction scheme

Two issues must be addressed

1. What to subtract?

2. How to add it back?
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Defining a subtraction scheme

Two issues must be addressed

1. What to subtract?

2. How to add it back?

Strategy: IR limits are process independent and known

1. Start by defining subtraction terms based on IR limit formulae ⇒ the
result is trivially general and explicit ✔

2. Worry about integrating them later, since this is in principle a very
narrowly defined problem, given 1., but in practice turns out to be very
cumbersome ✘
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Defining a subtraction scheme

The following three problems must be addressed

1. Matching of limits to avoid multiple subtraction in overlapping singular
regions of PS. Easy at NLO: collinear limit + soft limit - collinear limit of
soft limit.

A1|M
(0)
m+1|

2 =
∑

i

[

∑

i 6=r

1

2
Cir + Sr −

∑

i 6=r

CirSr

]

|M
(0)
m+1|

2

2. Extension of IR factorization formulae over full PS using momentum
mappings that respect factorization and delicate structure of cancellations
in all limits.

{p}m+1
r

−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m ;Q)[dp1,m]

{p}m+2
r,s
−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m ;Q)[dp2,m]

3. Integration of the counterterms over the phase space of the unresolved
parton(s).
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Defining a subtraction scheme

Specific issues at NNLO

1. Matching is cumbersome if done in a brute force way. However, an
efficient solution that works at any order in PT is known.

2. Extension is delicate. E.g. counterterms for singly-unresolved real emission
(unintegrated and integrated) must have universal IR limits. This is not
guaranteed by QCD factorization.

3. Choosing the counterterms such that integration is (relatively)
straightforward generally conflicts with the delicate cancellation of IR
singularities.
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NNLO subtraction terms - general features

Based on universal IR limit formulae

➠ Altarelli-Parisi splitting functions, soft currents (tree and one-loop, triple
AP functions)

➠ simple and general procedure for matching of limits using physical gauge

➠ extension based on momentum mappings that can be generalized to any
number of unresolved partons

Fully local in color ⊗ spin space

➠ no need to consider the color decomposition of real emission ME’s

➠ azimuthal correlations correctly taken into account in gluon splitting

➠ can check explicitly that the ratio of the sum of counterterms to the real
emission cross section tends to unity in any IR limit

Straightforward to constrain subtractions to near singular regions

➠ gain in efficiency

➠ independence of physical results on phase space cut is strong check

Given completely explicitly for any process with non colored initial state
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Conclusions and outlook

NNLO is the new precision frontier

Two bottlenecks

1. can we compute the relevant (2-loop) amplitudes?

2. if yes, can we use those to compute cross sections?

Subtraction is the traditional solution to 2. We have set up

➠ general, explicit, local subtraction scheme for computing NNLO jet cross
sections

➠ construction based on IR limit formulae

➠ worked out in full detail for processes with no colored particles in the
initial state

To Do:

➠ extension to hadron initiated processes
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