## Higher order QCD corrections

Gábor Somogyi

CERN Theory Group Retreat, 2012

## QCD at the LHC

# Complicated environment, QCD must be understood/modeled as best as feasible

- parton model beams of partons
- radiation off incoming partons
- primary hard scattering  $(\mu \simeq Q \gg \Lambda_{QCD})$
- radiation off outgoing partons  $(Q > \mu > \Lambda_{QCD})$
- hadronization and heavy hadron decay ( $\mu \simeq \Lambda_{QCD}$ )
- multiple parton interactions, underlying event



### The hard process in perturbation theory

The scale of the hard scattering is  $\mu \gg \Lambda_{QCD}$ , so by asymptotic freedom, it can be treated in perturbation theory, i.e. by expansion in powers of the strong coupling,  $\alpha_S(\mu)$ .

Consider a generic cross section for producing m jets

$$\sigma_m = \alpha_S^p \left( \sigma_m^{LO} + \alpha_S \sigma_m^{NLO} + \alpha_S^2 \sigma_m^{NNLO} + \dots \right)$$

Representative Feynman-diagrams

$$\frac{3}{3} + \left( \frac{3}{3} \frac{3}{3} + \frac{3}{3} + \frac{3}{3} \frac{3}{30000} \right) + \left( \frac{3}{3} \frac{3}{300} + \frac{3}{3} \frac{3}{3000} + \frac{3}{3} \frac{3}{30000} \right) + \cdots$$

How many terms to compute?

## Why NNLO?

LO prediction: order of magnitude estimate, rough shapes of distributions NLO is mandatory for meaningful normalization and shape predictions NNLO may be relevant

- NLO corrections are large:
  - Higgs production from gluon fusion in hadron collisions
- for benchmark processes measured with high experimental accuracy:
  - $\alpha_{\rm s}$  measurements form  ${\rm e^+e^-}$  event shapes
  - ▶ W, Z production
  - heavy quark hadroproduction
- reliable error estimate is needed:
  - processes relevant for PDF determination
  - important background processes



(Anastasiou, Dixon, Melnikov, Petriello, Phys. Rev. **D69** (2004) 094008.)

## **NNLO** ingredients

### A generic *m*-jet cross section at NNLO involves

- Tree-level squared matrix elements
  - with m+2 parton kinematics
  - known from LO calculations
  - ▶ 'doubly-real' contribution (RR)
- One-loop squared matrix elements
  - with m+1 parton kinematics
  - usually known from NLO calculations
  - 'real-virtual' contribution (RV)
- Two-loop squared matrix elements
  - with m parton kinematics
  - ▶ known for all massless  $2 \rightarrow 2$  processes
  - 'doubly-virtual' contribution (VV)

|   | 300000<br>300000 |
|---|------------------|
|   |                  |
| g | 9                |





## **NNLO** ingredients

### A generic *m*-jet cross section at NNLO involves

|         | Tree-level squared matrix elements  with $m+2$ parton kinematics  known from LO calculations  'doubly-real' contribution (RR)                              | 300000<br>300000<br>300000                               |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|         | One-loop squared matrix elements  with $m+1$ parton kinematics  usually known from NLO calculations  'real-virtual' contribution (RV)                      | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           |
| <b></b> | Two-loop squared matrix elements  • with $m$ parton kinematics  • known for all massless $2 \rightarrow 2$ processes  • 'doubly-virtual' contribution (VV) | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |

Assuming we know the relevant matrix elements, can we use those matrix elements to compute cross sections?

## The problem - IR singularities

### Consider the NNLO correction to a generic *m*-jet observable

$$\sigma^{\mathrm{NNLO}} = \int_{m+2} \mathrm{d}\sigma^{\mathrm{RR}}_{m+2} J_{m+2} + \int_{m+1} \mathrm{d}\sigma^{\mathrm{RV}}_{m+1} J_{m+1} + \int_m \mathrm{d}\sigma^{\mathrm{VV}}_m J_m \,.$$

### Doubly-real

- $ightharpoonup d\sigma_{m+2}^{RR}J_{m+2}$
- ► Tree MEs with m + 2-parton kinematics
- kin. singularities as one or two partons unresolved: up to  $O(\epsilon^{-4})$  poles from PS integration
- ightharpoonup no explicit  $\epsilon$  poles

#### Real-virtual

- $ightharpoonup d\sigma_{m+1}^{\mathrm{RV}} J_{m+1}$
- ▶ One-loop MEs with m + 1-parton kinematics
- kin. singularities as one parton unresolved: up to  $O(\epsilon^{-2})$  poles from PS integration
- explicit  $\epsilon$  poles up to  $O(\epsilon^{-2})$

#### Doubly-virtual

- $ightharpoonup d\sigma_m^{\rm VV} J_m$
- ▶ One- and two-loop MEs with *m*-parton kinematics
- kin. singularities screened by jet function: PS integration finite
- explicit  $\epsilon$  poles up to  $O(\epsilon^{-4})$

## The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

$$\sigma^{\mathrm{NNLO}} = \int_{m+2} \mathrm{d}\sigma^{\mathrm{RR}}_{m+2} J_{m+2} + \int_{m+1} \mathrm{d}\sigma^{\mathrm{RV}}_{m+1} J_{m+1} + \int_m \mathrm{d}\sigma^{\mathrm{VV}}_m J_m \,.$$

#### THE KIN THEOREM

Infrared singularities cancel between real and virtual quantum corrections at the same order in perturbation theory, for sufficiently inclusive (i.e. IR safe) observables.

#### **HOWEVER**

How to make this cancellation explicit, so that the various contributions can be computed numerically? Need a method to deal with implicit poles.

### Basics of subtraction

Strategy: rearrange IR singularities between various contributions by subtracting and adding back suitably defined approximate cross sections.

- subtraction terms match the singularity structure of real emission point wise (in d dimensions) ⇒ phase space integrals over real radiation rendered convergent
- integrated forms of subtraction terms have the same pole structure as virtual contribution ⇒ explicit ε-poles cancel point by point

The construction of a general (i.e. process- and observable-independent) subtraction algorithm

- made possible by the universal structure of IR singularities, embodied in so-called IR factorization formulae
- is not unique, hence several approaches (FKS, dipole, antenna,...)

### Subtraction - a caricature

Want to evaluate (at  $\epsilon \to 0$ )

$$\sigma = \int_0^1 \mathrm{d}\sigma^\mathrm{R}(x) + \sigma^\mathrm{V}$$
 where  $\mathrm{d}\sigma^\mathrm{R}(x) = x^{-1-\epsilon}R(x)$   $R(0) = R_0 < \infty$   $\sigma^\mathrm{V} = R_0/\epsilon + V$ 

define the counterterm

$$d\sigma^{\mathrm{R,A}}(x) = x^{-1-\epsilon}R_0$$

use it to reshuffle singularities between R and V contributions

$$\sigma = \int_0^1 \left[ d\sigma^{R}(x) - d\sigma^{R,A}(x) \right]_{\epsilon=0} + \left[ \sigma^{V} + \int_0^1 d\sigma^{R,A}(x) \right]_{\epsilon=0}$$

$$= \int_0^1 \left[ \frac{R(x) - R_0}{x^{1+\epsilon}} \right]_{\epsilon=0} + \left[ \frac{R_0}{\epsilon} + V - \frac{R_0}{\epsilon} \right]_{\epsilon=0}$$

$$= \int_0^1 \frac{R(x) - R_0}{x} + V$$

The last integral is finite, computable with standard numerical methods.

### Structure of the NNLO correction

#### Rewrite the NNLO correction as a sum of three terms

$$\sigma^{\rm NNLO} = \sigma^{\rm RR}_{m+2} + \sigma^{\rm RV}_{m+1} + \sigma^{\rm VV}_{m} = \sigma^{\rm NNLO}_{m+2} + \sigma^{\rm NNLO}_{m+1} + \sigma^{\rm NNLO}_{m}$$

### each integrable in four dimensions

$$\begin{split} &\sigma_{m+2}^{\rm NNLO} = \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\rm RR} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\rm RR,A_2} J_m - \left[ \mathrm{d}\sigma_{m+2}^{\rm RR,A_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\rm RR,A_{12}} J_m \right] \right\} \\ &\sigma_{m+1}^{\rm NNLO} = \int_{m+1} \left\{ \left[ \mathrm{d}\sigma_{m+1}^{\rm RV} + \int_1 \mathrm{d}\sigma_{m+2}^{\rm RR,A_1} \right] J_{m+1} - \left[ \mathrm{d}\sigma_{m+1}^{\rm RV,A_1} + \left( \int_1 \mathrm{d}\sigma_{m+2}^{\rm RR,A_1} \right)^{\rm A_1} \right] J_m \right\} \\ &\sigma_m^{\rm NNLO} = \int_m \left\{ \mathrm{d}\sigma_m^{\rm VV} + \int_2 \left[ \mathrm{d}\sigma_{m+2}^{\rm RR,A_2} - \mathrm{d}\sigma_{m+2}^{\rm RR,A_{12}} \right] + \int_1 \left[ \mathrm{d}\sigma_{m+1}^{\rm RV,A_1} + \left( \int_1 \mathrm{d}\sigma_{m+2}^{\rm RR,A_1} \right)^{\rm A_1} \right] \right\} J_m \end{split}$$

- 1.  ${\rm d}\sigma_{m+2}^{\rm RR,A_2}$  regularizes the doubly-unresolved limits of  ${\rm d}\sigma_{m+2}^{\rm RR}$
- 2.  ${\rm d}\sigma^{{\rm RR,A_1}}_{m+2}$  regularizes the singly-unresolved limits of  ${\rm d}\sigma^{{\rm RR}}_{m+2}$
- 3.  $d\sigma_{m+2}^{RR,A_{12}}$  accounts for the overlap of  $d\sigma_{m+2}^{RR,A_{1}}$  and  $d\sigma_{m+2}^{RR,A_{2}}$
- 4.  ${
  m d}\sigma_{m+1}^{{
  m RV},{
  m A}_1}$  regularizes the singly-unresolved limits of  ${
  m d}\sigma_{m+1}^{{
  m RV}}$
- 5.  $(\int_1 d\sigma_{m+2}^{RR,A_1})^{A_1}$  regularizes the singly-unresolved limit of  $\int_1 d\sigma_{m+2}^{RR,A_1}$

#### Two issues must be addressed

- 1. What to subtract?
- 2. How to add it back?

#### Two issues must be addressed

- 1. What to subtract?
- 2. How to add it back?

#### Strategy: IR limits are process independent and known

- Start by defining subtraction terms based on IR limit formulae ⇒ the result is trivially general and explicit
- Worry about integrating them later, since this is in principle a very narrowly defined problem, given 1., but in practice turns out to be very cumbersome X

#### The following three problems must be addressed

 Matching of limits to avoid multiple subtraction in overlapping singular regions of PS. Easy at NLO: collinear limit + soft limit - collinear limit of soft limit.

$$\mathbf{A}_{1}|\mathcal{M}_{m+1}^{(0)}|^{2} = \sum_{i} \left[ \sum_{i \neq r} \frac{1}{2} \mathbf{C}_{ir} + \mathbf{S}_{r} - \sum_{i \neq r} \mathbf{C}_{ir} \mathbf{S}_{r} \right] |\mathcal{M}_{m+1}^{(0)}|^{2}$$

Extension of IR factorization formulae over full PS using momentum mappings that respect factorization and delicate structure of cancellations in all limits.

$$\begin{split} \{p\}_{m+1} &\stackrel{r}{\longrightarrow} \{\tilde{p}\}_m: \quad \mathrm{d}\phi_{m+1}(\{p\}_{m+1}; \, Q) = \mathrm{d}\phi_m(\{\tilde{p}\}_m; \, Q)[\mathrm{d}p_{1,m}] \\ \{p\}_{m+2} &\stackrel{r,s}{\longrightarrow} \{\tilde{p}\}_m: \quad \mathrm{d}\phi_{m+2}(\{p\}_{m+2}; \, Q) = \mathrm{d}\phi_m(\{\tilde{p}\}_m; \, Q)[\mathrm{d}p_{2,m}] \end{split}$$

Integration of the counterterms over the phase space of the unresolved parton(s).

### Specific issues at NNLO

- 1. Matching is cumbersome if done in a brute force way. However, an efficient solution that works at any order in PT is known.
- 2. Extension is delicate. E.g. counterterms for singly-unresolved real emission (unintegrated and integrated) must have universal IR limits. This is not guaranteed by QCD factorization.
- 3. Choosing the counterterms such that integration is (relatively) straightforward generally conflicts with the delicate cancellation of IR singularities.

## NNLO subtraction terms - general features

#### Based on universal IR limit formulae

- Altarelli-Parisi splitting functions, soft currents (tree and one-loop, triple AP functions)
- simple and general procedure for matching of limits using physical gauge
- extension based on momentum mappings that can be generalized to any number of unresolved partons

### Fully local in color ⊗ spin space

- no need to consider the color decomposition of real emission ME's
- azimuthal correlations correctly taken into account in gluon splitting
- can check explicitly that the ratio of the sum of counterterms to the real emission cross section tends to unity in any IR limit

### Straightforward to constrain subtractions to near singular regions

- gain in efficiency
- independence of physical results on phase space cut is strong check

### Given completely explicitly for any process with non colored initial state

### Conclusions and outlook

### NNLO is the new precision frontier

#### Two bottlenecks

- 1. can we compute the relevant (2-loop) amplitudes?
- 2. if yes, can we use those to compute cross sections?

#### Subtraction is the traditional solution to 2. We have set up

- general, explicit, local subtraction scheme for computing NNLO jet cross sections
- construction based on IR limit formulae
- worked out in full detail for processes with no colored particles in the initial state

#### To Do:

extension to hadron initiated processes