UV divergences of SUGRA and SYM and Color-Kinematics Duality

Henrik Johansson

TH Retreat Thoiry - St Genis

Nov 9, 2012

Interests...

- Scattering amplitudes in $D=4$
- Planar and non-planar $N=4$ SYM
- $N=8$ supergravity
- General multi-loop methods...towards QCD
- $D=3$ BLG/ABJM theory
- UV divergences in $D=4$ and higher dimensions
- Question of SUGRA UV finiteness/divergences
- $D=5$ SYM and the relation to $(2,0)$ theory
- Hidden structures in gauge theory and gravity
- Duality between color and kinematics
- Gravity as a double copy of gauge theory

Why Amplitudes ?

- Simplicity
- The most basic gauge-invariant structures of a theory
- High degree of universality - rules are constrained
- Controlled by Lorentz sym, factorization and unitarity
- on-shell simplicity - natural for massless gauge theory
- Strikingly simpler than Lagrangian would suggest
- Richness
- Infinite amount of data to study
- Expose hidden symmetries in established theories
- Can deeply probe a theory - multi-loop calculations
- Allows precision phenomenology !

UV divergences

Question of supergravity finiteness...

Parameter space for UV divergences in $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

5-loop UV calc. will give strong indication of $\mathcal{N}=8$ finiteness/divergence

Gauge Theory Analogy

- Gauge theory in $D>4$ have same problem as $D=4$ gravity
- Non-renormalizable due to dimensionful coupling
- However, $D=5$ SYM has a UV completion: $(2,0)$ theory in $D=6$
- Is $D=5$ SYM perturbatively UV finite ? Douglas; Lambert et al.
- If yes, how does it work?
- If no, what do we need to add?
- Solitons, KK modes ? Douglas; Lambert et al.

Hohenegger et al.

- Understanding $D=5$ SYM might (or might not) give clues to how to understand $D=4$ gravity.

6-Loop Planar D=5 SYM

- 68 planar diagrams
- Given by dual conformal invariance (up to integer $0,1,-1,2, \ldots$ prefactors)
- Independently constructed by:

Eden, Heslop, Korchemsky, Sokatchev;
Bourjaily, DiRe, Shaikh, Spradlin, Volovich
Henrik Johansson

6-Loop $D=5$ SYM divergence

Bern, Carrasco, Dixon, Douglas, HJ, von Hippel

(f)

(g)

(h)

$$
\left.A_{4}^{(6)}\right|_{D=5, \text { div. }}=6 s t u A_{4}^{\text {tree }}(1,2,3,4)\left(10 V^{(\mathrm{f})}+5 V^{(\mathrm{g})}-V^{(\mathrm{h})}\right)
$$

- Using integration by parts identities, div. simplifies to 3 integrals
- Div. cannot be written on positive definite form ?
- Numerical integration required - modified version of FIESTA \& 1000 node cluster at Stony Brook
- Result: divergence is nonzero.

$$
\left.A_{4}^{(6)}\right|_{D=5, \text { div. }}=\frac{1}{\epsilon} \frac{1}{(4 \pi)^{15}} s t u A_{4}^{\text {tree }}(1,2,3,4)(68.68 \pm 0.17)
$$

- What cancels this divergence ? Solitons/KK modes ? Douglas; Lambert et al.

Color-Kinematics Duality

Color-Kinematics Duality

Yang-Mills theories are controlled by a kinematic Lie algebra

- Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \curvearrowleft \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \longleftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy same relations:

Duality: color \leftrightarrow kinematics
Bern, Carrasco, HJ

Some details of color-kinematics duality

Bern, Carrasco, HJ
can be checked for 4 pt on-shell ampl. using Feynman rules

Example with two quarks:

$$
\varepsilon_{2} \cdot\left(\bar{u}_{1} V u_{3}\right) \cdot \varepsilon_{4}=\frac{\bar{u}_{1 \neq} \not \phi_{t} \not_{2} u_{3}-\bar{u}_{1 \neq \phi_{2} \phi_{s} \oiint_{4} u_{3}}^{c b a}=T_{i j}^{b} T_{j k}^{a}-T_{i j}^{a} T_{j k}^{b}}{}
$$

1. $\left(A^{\mu}\right)^{4}$ contact interactions absorbed into cubic graphs

- by hand $1=s / s$
- or by auxiliary field $B \sim\left(A^{\mu}\right)^{2}$

2. Beyond 4-pts duality not automatic \rightarrow Lagrangian reorganization
3. Known to work at tree level: all-n example Kiermaier; Bjerrum-Bohr et al.
4. Enforces (BCJ) relations on partial amplitudes \rightarrow ($n-3$)! basis
5. Same/similar relations control string theory S-matrix

Gravity is a double copy

- Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{align*}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \tag{BCJ}\\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{align*}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{cccc}
n_{i} & \tilde{n}_{i} & & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra } & \begin{array}{l}
\text { similar } t \\
\text { Lewellen } \\
\text { works at }
\end{array} \\
(\mathcal{N}=4) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text { sugra } & \\
(\mathcal{N}=4) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text { sugra } & \\
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity + axion+ dilaton }
\end{array}
$$

C-K amplitudes, 1-loop examples

Known duality-satisfying loop amplitudes:

N=4 SYM:

All-plus QCD:
$\mathrm{N}=4 \mathrm{SYM}$ and All-plus QCD:

Green, Schwarz, Brink (1982)

1106.4711 [hep-th] Carrasco, HJ

$$
\begin{array}{ll}
\beta_{12345}^{\mathcal{N}=4}=\delta^{(8)}(Q) \frac{[12][23][34][45][51]}{4 \epsilon(1,2,3,4)} & \gamma_{12}^{\mathcal{N}=4}=\delta^{(8)}(Q) \frac{{ }^{(\mathrm{P})}}{}{ }^{(12]^{2}[34][45)[35]} \\
4 \epsilon(1,2,3,4) \\
\beta_{12345}^{+++++}=\mu^{4} \frac{[12][23][34][45][51]}{4 \epsilon(1,2,3,4)} & \gamma_{12}^{+++++}=\mu^{4} \frac{[12]^{2}[34][45][35]}{4 \epsilon(1,2,3,4)}
\end{array}
$$

2-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

(a)

(b)

(d)

(c)

$\mathcal{I}^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}}=8$ supergravity $)$ numerator
(a),(b)	$\frac{1}{4}\left(\gamma_{12}\left(2 s_{45}-s_{12}+\tau_{2 p}-\tau_{1 p}\right)+\gamma_{23}\left(s_{45}+2 s_{12}-\tau_{2 p}+\tau_{3 p}\right)\right.$
	$\left.+2 \gamma_{45}\left(\tau_{5 p}-\tau_{4 p}\right)+\gamma_{13}\left(s_{12}+s_{45}-\tau_{1 p}+\tau_{3 p}\right)\right)$
(c)	$\frac{1}{4}\left(\gamma_{15}\left(\tau_{5 p}-\tau_{1 p}\right)+\gamma_{25}\left(s_{12}-\tau_{2 p}+\tau_{5 p}\right)+\gamma_{12}\left(s_{34}+\tau_{2 p}-\tau_{1 p}+2 s_{15}+2 \tau_{1 q}-2 \tau_{2 q}\right)\right.$ $\left.+\gamma_{45}\left(\tau_{4 q}-\tau_{5 q}\right)-\gamma_{35}\left(s_{34}-\tau_{3 q}+\tau_{5 q}\right)+\gamma_{34}\left(s_{12}+\tau_{3 q}-\tau_{4 q}+2 s_{45}+2 \tau_{4 p}-2 \tau_{3 p}\right)\right)$
(d)-(f)	$\gamma_{12} s_{45}-\frac{1}{4}\left(2 \gamma_{12}+\gamma_{13}-\gamma_{23}\right) s_{12}$

$\mathcal{N}=8$ SG obtained from numerator double copies
Carrasco, HJ 1106.4711 [hep-th]

The 2-loop 5-point amplitude with duality exposed

$$
\tau_{i p}=2 k_{i} \cdot p
$$

Summary

- Explicit calculations in $\mathcal{N}=8$ SUGRA up to four loops show that the power counting exactly follows that of $\mathcal{N}=4$ SYM - a finite theory
- 5 loop calculation in $D=24 / 5$ probes the potential 7-Ioop $D=4$ counterterm - will provide critical input to the $\mathcal{N}=8$ question !
- $D=5$ SYM have a 6-Ioop UV divergence, showing that the standard perturbative expansion misses some of the $(2,0)$ theory contributions.
- Color-Kinematics Duality shows that Yang-Mills contains a hidden kinematic Lie Algebra - gravity being the double copy of this
- Allows gravity calculations simply by reorganizing the Yang-Mills amplitude - greatly facilitating UV analysis in gravity
- Stay tuned for the 5-loop SUGRA result...

