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and Color-Kinematics Duality 

nontrivial relations between different vacuum integrals,

Ii[Ñi]
(

εkj, pl + ε
∑

j

cljkj
)

∼ Ii[Ñi](εkj, pl) , (3.8)

where clj is an arbitrary integer-valued 6 × 3 matrix, where different choices will generate
different relations between vacuum integrals. The expansions in ε of the two different inte-
grands will differ considerably. But by the reparametrization freedom, the two sides must be
equivalent as integrands, or equal after integration. Therefore the various vacuum integrals
that arise from integrating the coefficients of each element of clj in eq. (3.8) must satisfy
nontrivial consistency relations.

It is important to make judicious choices for the integral numerators Ñi used to generate
useful consistency relations. For example, using the original Ni appearing in the integrand
of the amplitude is not a good choice, because their divergences are manifestly logarithmic
in D = 5 − 2ε. The UV divergence of a logarithmically-divergent integral is given by the
leading term in ε. This term is always insensitive to the shift in the loop momenta ql,
and so the available consistency relations become trivial. The first nontrivial relations are
obtained using numerators Ñi containing one additional power of a loop momentum, which
give linearly-divergent integrals in D = 5− 2ε. The relevant vacuum integrals relations are
obtained from the next-to-leading term in ε, which will differ on both sides of eq. (3.7).
Numerators Ñi that give rise to quadratic divergences are also useful for extracting integral
relations. However, numerators with an even higher degree are less helpful, since after taking
derivatives with respect to ε they give rise to vacuum diagrams with three or more doubled
propagators. These are outside the class of integrals that we are interested in; the vacuum
diagrams in fig. 5 have at most two doubled propagators.

Furthermore, one should not choose Ñi that give rise to subdivergences in D = 5 − 2ε,
because then the consistency relations may be contaminated by relations that are only valid
for overlapping leading 1/εn UV poles. Specifically, for integration in D = 5−2ε dimensions,
UV subdivergences are possible in principle for two- and four-loop subdiagrams. Any Ñi

generating such a subdivergence should be eliminated from the set of choices, because it will
not produce any useful identities.
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FIG. 7: Two simpler vacuum integrals that appear in the UV divergence after using integral

identities. The third integral that enters the divergence is fig. 5(f).

Generating a sufficient set of consistency relations then comes down to varying the Ñi

polynomials for an appropriately large function space, without exceeding available compu-
tational resources. This includes varying the matrix clj that controls the reparametrization
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Interests… 
!   Scattering amplitudes in D=4 

!   Planar and non-planar N=4 SYM 
!   N=8 supergravity 
!   General multi-loop methods…towards QCD 

!   D=3 BLG/ABJM theory 
 

!   UV divergences in D=4 and higher dimensions 

!   Question of SUGRA UV finiteness/divergences 
!   D=5 SYM and the relation to (2,0) theory 

!   Hidden structures in gauge theory and gravity 

!   Duality between color and kinematics 
!   Gravity as a double copy of gauge theory 
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Why Amplitudes ? 
!   Simplicity  

!   The most basic gauge-invariant structures of a theory  
!   High degree of universality – rules are constrained  
!   Controlled by Lorentz sym, factorization and unitarity 

!   on-shell simplicity -- natural for massless gauge theory 
!   Strikingly simpler than Lagrangian would suggest 
 

!   Richness  

!   Infinite amount of data to study 
!   Expose hidden symmetries in established theories 
!   Can deeply probe a theory -- multi-loop calculations 

!   Allows precision phenomenology ! 
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UV divergences 
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Question of supergravity finiteness…  
Parameter space for UV divergences in N = 8 SUGRA and N = 4 SYM 
 

N = 4 SYM and current 
trend for N = 8 SUGRA 

pessimistic power 
counting prediction 
for N = 8 SUGRA 

calculations: 
1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti  
3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 
6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel 

26/5 or 24/5 ? 

Finite �

Divergent�

? �

5-loop UV calc. will give strong indication of N = 8  finiteness/divergence   
�
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Gauge Theory Analogy  
!   Gauge theory in D>4 have same problem as D=4 gravity 
!   Non-renormalizable due to dimensionful coupling 
!   However, D=5 SYM has a UV completion: (2,0) theory in D=6 

!   Is D=5 SYM perturbatively UV finite ?  Douglas; Lambert et al. 

!   If yes, how does it work ? 
!   If no, what do we need to add ? 
! Solitons, KK modes ? Douglas; Lambert et al. 

     Hohenegger et al. 

  

!   Understanding D=5 SYM might (or might not)  

       give clues to how to understand D=4 gravity. (2,0) theory ? 

D=5 	


SYM	
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6-Loop Planar D=5 SYM 

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(15)(13)(11) (14)(12)

(20)(18)(16) (17) (19)

(25)(23)(21) (24)(22)

(30)(28)(26) (29)(27)

(35)(33)(31) (32) (34)

FIG. 1: Graphs 1 through 35 for the planar six-loop four-point amplitude.

where the monomials Mij depend only on Lorentz invariants constructed from the dual
(loop) momenta for each diagram, and the aij are numerical coefficients (rational numbers)
to be determined from various constraints.

As a first step, we require the monomials to have the proper weight under dual conformal
transformations. To expose the dual conformal properties we use the standard [32] dual
variables xi − xj = xij , with

x41 = k1 , x12 = k2, x23 = k3, x34 = k4 , (2.5)

where ki are the external momenta. As discussed in detail in ref. [12], a practical way of
expressing the internal momenta of a diagram in terms of dual variables is to use an (L+1)-
particle cut, which divides the L-loop amplitude into two tree amplitudes connected by
(L+1) cut legs. At six loops, we consider a seven-particle cut in the s = (k1+ k2)2 channel.
The seven cut legs carry momenta p5, p6, . . . , p11. The six dual loop momenta x5, x6, . . . , x10

are then defined by,

x45 = p5 , x56 = p6 , x67 = p7 , x78 = p8 , x89 = p9 , x9,10 = p10 . (2.6)

The key dual conformal properties follow from the behavior of the integrand under dual
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(36) (37) (38) (39) (40) (41)

(42) (44) (45) (46) (47)(43)
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FIG. 2: Graphs 36 through 68 for the planar six-loop four-point amplitude.

coordinate inversion, which maps

xµ
i → xµ

i

x2
i

, x2
ij →

x2
ij

x2
ix

2
j

. (2.7)

In four dimensions, dual conformal invariance requires that each term in the integrand scales
as [32]

Ii →
( 4
∏

j=1

x2
j

) [ 10
∏

l=5

(x2
l )

4

]

Ii . (2.8)

The integrands of planar MSYM in D dimensions have been shown to transform in exactly
the same fashion to all loop orders, at least for D ≤ 6 [37, 38]. This property is sufficient
for our purposes, since we are mainly interested in the integrand in D = 5.

The (L+1)-particle cuts can also be used to generate the complete list of graphs needed
at six loops. One considers all possible sewings of two tree-level cubic graphs that appear in
these cuts [12]. (We modify the procedure slightly compared to ref. [12] by including only
diagrams with cubic vertices.) In principle there are dual conformal graphs with four- or
higher-point vertices that are not generated by the product of tree graphs of the (L + 1)-
particle cuts; however, all such potential contributions, including those not detectable in the
(L+1)-particle cuts, can be assigned to graphs with only cubic vertices by multiplying and

7

•  68 planar diagrams 
•  Given by dual conformal invariance (up to integer 0,1,-1,2,… prefactors) 
•  Independently constructed by:   Eden, Heslop, Korchemsky, Sokatchev;  

     Bourjaily, DiRe, Shaikh, Spradlin, Volovich   	



Bern, Carrasco, Dixon,  
Douglas, HJ, von Hippel   



6-Loop D=5 SYM divergence 

•  Using integration by parts identities, div. simplifies to 3 integrals 
•  Div. cannot be written on positive definite form ? 
•  Numerical integration required – modified version of FIESTA & 

     1000 node cluster at Stony Brook 
•  Result: divergence is nonzero. 

•  What cancels this divergence ? Solitons/KK modes ? Douglas; Lambert et al. 

Bern, Carrasco, Dixon, Douglas, HJ, von Hippel   
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FIG. 5: The six distinct vacuum diagrams that appear in eqs. (3.3) and (3.4). Each dot indicates
that the corresponding propagator should be squared (doubled) in the integrand. The five “tensor”
integrals have numerator factors that are indicated by the prefactors. The numerator factors are

built from momentum invariants involving a subset of the loop momenta, labeled by l1, l2, l3, l4.

where Ai,x and Bi,x are rational numbers determined by the expansion. (We will not list
these coefficients separately for each diagram.) After the above vacuum integrands V(x) are
integrated over the six loop momenta p5, p6, . . . p10 in D = 5− 2ε, with the measure

∫ 10
∏

l=5

d5−2εpl
(2π)5

, (3.2)

we obtain six vacuum integrals, V (a), V (b), . . . , V (f), shown in fig. 5. These integrals have
numerator factors which are indicated to the left of each graph, and either one or two
doubled propagator, whose location is indicated by a dot. The integrals V (x) contain no
subdivergences; each integral has a single overall UV divergence in D = 5 when all six loop
momenta become large. Hence the integrals have only simple poles in ε.

Collecting the contributions from the 68 distinct integrals in the six-loop amplitude
eq. (2.2), we obtain the following UV divergence

A(6)
4

∣

∣

∣

D=5, div.
= 6stuAtree

4 (1, 2, 3, 4)(V (a) + V (b) + 2V (c) + 4V (d) + 2V (e) − 2V (f)) . (3.3)

10

A(6)
4

���
D=5, div.

= 6stuAtree
4 (1, 2, 3, 4)(10V (f) + 5V (g) � V (h))

A(6)
4

���
D=5, div.

=
1

✏

1

(4⇡)15
stuAtree

4 (1, 2, 3, 4)(68.68 ± 0.17)



Henrik Johansson 

Color-Kinematics Duality 
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Color-Kinematics Duality 
Yang-Mills theories are controlled by a kinematic Lie algebra 
 

• Amplitude represented by cubic graphs:   

Color & kinematic  
numerators satisfy  
same relations: 

Duality: color ↔ kinematics  

Jacobi 
identity 

antisymmetry 

propagators 

color factors 

numerators 

Bern, Carrasco, HJ   

fbac = � fabc
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Some details of color-kinematics duality 

can be checked for 4pt on-shell ampl. using Feynman rules 
Bern, Carrasco, HJ 

Example with  
two quarks: 

1.           contact interactions absorbed into cubic graphs 
•  by hand 1=s/s 
•  or by auxiliary field 

2.  Beyond 4-pts duality not automatic è Lagrangian reorganization 
3.  Known to work at tree level: all-n example  Kiermaier; Bjerrum-Bohr et al. 

4.  Enforces (BCJ) relations on partial amplitudes è (n-3)! basis 
5.  Same/similar relations control string theory S-matrix 

          Bjerrum-Bohr, Damgaard, Vanhove; Stieberger 
 

(Aµ)4

B ⇠ (Aµ)2
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Gravity is a double copy 

•  The two numerators can belong to different theories: 

•  Gravity amplitudes obtained by replacing color with kinematics 

(N =4) × (N =4)   →     N =8 sugra 
(N =4) × (N =2)   →     N =6 sugra 

(N =0) × (N =0)   →     Einstein gravity + axion+ dilaton 

(N =4) × (N =0)   →     N =4 sugra 

BCJ 

similar to Kawai- 
Lewellen-Tye but  
works at loop level 
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C-K amplitudes, 1-loop examples 

2	



4	

1	



3	


Green, Schwarz, 
Brink (1982)	



Known duality-satisfying loop amplitudes:  

2	



4	

1	



3	



N=4 SYM: 

All-plus QCD: 

N=4 SYM and 
All-plus QCD: 

1106.4711 [hep-th] 
Carrasco, HJ	
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2-loop 5-pts N =4 SYM and N =8 SG 

The 2-loop 5-point 
amplitude with 
duality exposed 

N = 8 SG obtained 
from numerator 
double copies 

Carrasco, HJ   

1106.4711 [hep-th] 
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Summary 
!   Explicit calculations in N = 8 SUGRA up to four loops show that the 

power counting exactly follows that of N = 4 SYM -- a finite theory 
 

!   5 loop calculation in D=24/5 probes the potential 7-loop  D=4 
counterterm -- will provide critical input to the N = 8 question !  

!   D=5 SYM have a 6-loop UV divergence, showing that the standard 
perturbative expansion misses some of the (2,0) theory contributions. 

!   Color-Kinematics Duality shows that Yang-Mills contains a hidden 
kinematic Lie Algebra – gravity being the double copy of this 

!   Allows gravity calculations simply by reorganizing the Yang-Mills 
amplitude -- greatly facilitating UV analysis in gravity 

 

!   Stay tuned for the 5-loop SUGRA result… 

 


