UV divergences of SUGRA and SYM and Color-Kinematics Duality

Henrik Johansson

TH Retreat
Thoiry - St Genis

Nov 9, 2012

Interests...

- Scattering amplitudes in D=4
 - Planar and non-planar N=4 SYM
 - N=8 supergravity
 - General multi-loop methods...towards QCD
 - D=3 BLG/ABJM theory
- UV divergences in D=4 and higher dimensions
 - Question of SUGRA UV finiteness/divergences
 - **D**=5 SYM and the relation to (2,0) theory
- Hidden structures in gauge theory and gravity
 - Duality between color and kinematics
 - Gravity as a double copy of gauge theory

This talk

Why Amplitudes?

Simplicity

- The most basic gauge-invariant structures of a theory
- High degree of universality rules are constrained
- Controlled by Lorentz sym, factorization and unitarity
- on-shell simplicity natural for massless gauge theory
- Strikingly simpler than Lagrangian would suggest

Richness

- Infinite amount of data to study
- Expose hidden symmetries in established theories
- Can deeply probe a theory multi-loop calculations
- Allows precision phenomenology!

UV divergences

Question of supergravity finiteness...

Parameter space for UV divergences in $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

5-loop UV calc. will give strong indication of $\mathcal{N}=8$ finiteness/divergence

Gauge Theory Analogy

- **●** Gauge theory in D>4 have same problem as D=4 gravity
- Non-renormalizable due to dimensionful coupling
- However, D=5 SYM has a UV completion: (2,0) theory in D=6
 - Is D=5 SYM perturbatively UV finite? Douglas; Lambert et al.
 - If yes, how does it work?
 - If no, what do we need to add?
 - Solitons, KK modes ? Douglas; Lambert et al.

Hohenegger et al.

Understanding D=5 SYM might (or might not) give clues to how to understand D=4 gravity.

6-Loop Planar D=5 SYM

- 68 planar diagrams
- Given by dual conformal invariance (up to integer 0,1,-1,2,... prefactors)
- Independently constructed by:

Eden, Heslop, Korchemsky, Sokatchev;

Bourjaily, DiRe, Shaikh, Spradlin, Volovich

6-Loop D=5 SYM divergence

Bern, Carrasco, Dixon, Douglas, HJ, von Hippel

$$\left. A_4^{(6)} \right|_{D=5, \; ext{div.}} = 6 stu A_4^{ ext{tree}}(1,2,3,4) (10 V^{(ext{f})} + 5 V^{(ext{g})} - V^{(ext{h})})$$

- Using integration by parts identities, div. simplifies to 3 integrals
- Div. cannot be written on positive definite form?
- Numerical integration required modified version of FIESTA &
 1000 node cluster at Stony Brook
- Result: divergence is nonzero.

$$\left. A_4^{(6)} \right|_{D=5, \; ext{div.}} = rac{1}{\epsilon} rac{1}{(4\pi)^{15}} stu A_4^{ ext{tree}}(1,2,3,4) (68.68 \pm 0.17)$$

What cancels this divergence ? Solitons/KK modes ? Douglas; Lambert et al.

Color-Kinematics Duality

Color-Kinematics Duality

Yang-Mills theories are controlled by a kinematic Lie algebra

Amplitude represented by cubic graphs:

$$\mathcal{A}_m^{(L)} = \sum_{i \in \Gamma_2} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_i} \, \frac{n_i c_i \text{ color factors}}{p_{i_1}^2 p_{i_2}^2 p_{i_3}^2 \cdots p_{i_l}^2} \text{\leftarrow propagators}$$

Color & kinematic numerators satisfy same relations:

$$f^{adc}f^{ceb}=f^{eac}f^{cbd}-f^{abc}f^{cde}$$

$$f^{bac}=-f^{abc}$$

$$f^{bac}=-f^{abc}$$

$$f^{bac}=-f^{abc}$$

$$f^{bac}=-f^{abc}$$

$$f^{bac}=-f^{abc}$$

$$f^{bac}=-f^{abc}$$

Duality: color ⇔ kinematics

Bern, Carrasco, HJ

numerators

Henrik Johansson

Some details of color-kinematics duality

Bern, Carrasco, HJ

can be checked for 4pt on-shell ampl. using Feynman rules

Example with two quarks:

- 1. $(A^{\mu})^4$ contact interactions absorbed into cubic graphs
 - by hand 1=s/s
 - or by auxiliary field $B \sim (A^\mu)^2$
- 2. Beyond 4-pts duality not automatic Lagrangian reorganization
- 3. Known to work at tree level: all-n example Kiermaier; Bjerrum-Bohr et al.
- 4. Enforces (BCJ) relations on partial amplitudes → (n-3)! basis
- 5. Same/similar relations control string theory S-matrix

Bjerrum-Bohr, Damgaard, Vanhove; Stieberger

Gravity is a double copy

Gravity amplitudes obtained by replacing color with kinematics

$$\mathcal{A}_{m}^{(L)} = \sum_{i \in \Gamma_{3}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}c_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}}$$
 bcj
$$\mathcal{M}_{m}^{(L)} = \sum_{i \in \Gamma_{2}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}\tilde{n}_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}}$$

The two numerators can belong to different theories:

$$n_i$$
 \tilde{n}_i $(\mathcal{N}=4) \times (\mathcal{N}=4) \rightarrow \mathcal{N}=8 \text{ sugra}$ Similar to Kawai-Lewellen-Tye but $(\mathcal{N}=4) \times (\mathcal{N}=2) \rightarrow \mathcal{N}=6 \text{ sugra}$ works at loop level $(\mathcal{N}=4) \times (\mathcal{N}=0) \rightarrow \mathcal{N}=4 \text{ sugra}$ $(\mathcal{N}=0) \times (\mathcal{N}=0) \rightarrow \text{Einstein gravity + axion+ dilaton}$ Henrik Johansson

C-K amplitudes, 1-loop examples

Known duality-satisfying loop amplitudes:

$$stA_4^{\text{tree}}$$

Green, Schwarz, Brink (1982)

All-plus QCD:

$$\frac{\langle 1 \, 2 \rangle \, \langle 3 \, 4 \rangle}{[1 \, 2] \, [3 \, 4]} \, \mu^4$$

N=4 SYM and All-plus QCD:

1106.4711 [hep-th] Carrasco, HJ

$$\beta_{12345}^{\mathcal{N}=4} = \delta^{(8)}(Q) \frac{[12][23][34][45][51}{4\epsilon(1,2,3,4)}$$

$$\gamma_{12}^{\mathcal{N}=4} = \delta^{(8)}(Q) \frac{[12]^2 [34][45][35]}{4\epsilon(1,2,3,4)}$$

$$\beta_{12345}^{+++++} = \mu^4 \frac{[12][23][34][45][51]}{4\epsilon(1,2,3,4)}$$

$$\gamma_{12}^{+++++} = \mu^4 \frac{[12]^2 [34][45][35]}{4\epsilon(1,2,3,4)}$$

Henrik Johansson

2-loop 5-pts \mathcal{N} =4 SYM and \mathcal{N} =8 SG

Carrasco, HJ 1106.4711 [hep-th]

The 2-loop 5-point amplitude with duality exposed

$\mathcal{I}^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills ($\sqrt{\mathcal{N}}=8$ supergravity) numerator
(a),(b)	$rac{1}{4} \Big(\gamma_{12} (2s_{45} - s_{12} + au_{2p} - au_{1p}) + \gamma_{23} (s_{45} + 2s_{12} - au_{2p} + au_{3p})$
	$+\left.2\gamma_{45}(au_{5p}- au_{4p})+\gamma_{13}(s_{12}+s_{45}- au_{1p}+ au_{3p}) ight)$
(c)	$rac{1}{4}\Big(\gamma_{15}(au_{5p}- au_{1p})+\gamma_{25}(s_{12}- au_{2p}+ au_{5p})+\gamma_{12}(s_{34}+ au_{2p}- au_{1p}+2s_{15}+2 au_{1q}-2 au_{2q})$
	$+\left. \gamma_{45}(au_{4q}- au_{5q}) - \gamma_{35}(s_{34}- au_{3q}+ au_{5q}) + \gamma_{34}(s_{12}+ au_{3q}- au_{4q}+2s_{45}+2 au_{4p}-2 au_{3p}) ight) ight $
(d)-(f)	$\gamma_{12}s_{45} - rac{1}{4}\Big(2\gamma_{12} + \gamma_{13} - \gamma_{23}\Big)s_{12}$

 \mathcal{N} = 8 SG obtained from numerator double copies

Summary

- Explicit calculations in $\mathcal{N}=8$ SUGRA up to four loops show that the power counting exactly follows that of $\mathcal{N}=4$ SYM a finite theory
- **▶** 5 loop calculation in D=24/5 probes the potential 7-loop D=4 counterterm will provide critical input to the $\mathcal{N}=8$ question!
- D=5 SYM have a 6-loop UV divergence, showing that the standard perturbative expansion misses some of the (2,0) theory contributions.
- Color-Kinematics Duality shows that Yang-Mills contains a hidden kinematic Lie Algebra – gravity being the double copy of this
- Allows gravity calculations simply by reorganizing the Yang-Mills amplitude greatly facilitating UV analysis in gravity
- Stay tuned for the 5-loop SUGRA result...