Introduction Holographic approach Bianchi spacetimes Summary

David Vegh

CERN Theory Group Retreat - November 9, 2012

Introduction Holographic approach Bianchi spacetimes Summary

Introduction

Drude model

Holographic approach
Charged black hole in Anti-de Sitter
Conductivity

Bianchi spacetimes

Summary

Naive picture of electrons in metals

Naive picture of electrons in metals

electrons accelerate forever $\ o$ DC conductivity is ∞

two ways to resolve this issue:

- dilute charge carriers
- break translational invariance

Conductivity

Paul Drude

Ohm's law:
$$\vec{j}(\omega) = \sigma(\omega)\vec{E}(\omega)$$

Drude model:
$$m \frac{d\vec{v}}{dt} + \frac{m}{\tau} \vec{v} = q \vec{E}$$

$$\vec{j} = nq\vec{v} \quad \rightarrow \quad \sigma(\omega) = \left(\frac{nq^2\tau}{m}\right)\frac{1}{1-i\omega\tau}$$

frequency

Cuprate high temperature superconductors

[van der Marel, et. al., Nature 425 (2003) 271]

Gauge / gavity duality

Charged black hole in AdS₄

Relativistic CFT_3 with gravity dual and conserved U(1) global symmetry

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(\mathcal{R} + \frac{6}{R^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \ldots \right)$$

Charged black hole solution

$$ds^{2} = \frac{r^{2}}{R^{2}} \left(-f(r)dt^{2} + d\vec{x}^{2} \right) + R^{2} \frac{dr^{2}}{f(r)r^{2}}$$

$$AdS_{4} \qquad f(r) = 1 + \frac{Q^{2}}{r^{4}} - \frac{M}{r^{3}} \qquad A = \mu \left(1 - \frac{r_{0}}{r} \right) dt$$

 μ : chemical potential horizon at $r = r_0$.

Conductivity

compute conductivity using Kubo formula

$$\sigma(\omega) = \frac{1}{i\omega} \langle J_{x}(\omega) J_{x}(\omega) \rangle_{ret.}$$

- $\triangleright J_x$ dual to a_x (which mixes with g_{tx} in the bulk)
- the result:

$$\sigma(\omega) = \frac{\rho^2}{\varepsilon + P} \cdot \frac{i}{\omega} + \mathcal{K}\omega^2$$

- ightarrow iarepsilon prescription gives $\delta(\omega)$ in the real part ightarrow $\sigma_{DC}=\infty$
- two ways to resolve this issue:
 - dilute charge carriers
 - break translational invariance

Conductivity (dilute)

contribution of holographic Fermi surfaces to conductivity

[Faulkner-Iqbal-Liu-McGreevy-DV]

$$\begin{array}{cccc} \nu < \frac{1}{2} & \sigma(\omega) \sim T^{-2\nu} F_1(\omega/T) \\ & \text{for } \omega \gg T \colon \sigma(\omega) \sim (i\omega)^{-2\nu} \\ \\ \nu > \frac{1}{2} & \sigma(\omega) \sim T^{-2\nu} F_2(\omega/T^{2\nu}) \\ & \text{for } \omega \sim T^{2\nu} \colon \sigma(\omega) \sim \frac{\sigma_0}{1+i\omega\tau} \text{ (Drude)} \\ & \text{for } \omega \gg T \colon \sigma(\omega) \sim \frac{ia}{1} + b(i\omega)^{2\nu-2} \end{array}$$

Conductivity (lattice)

[Horowitz-Santos-Tong]

inhomogeneous boundary conditions on fields: 1d lattice

- ightharpoonup optical conductivity: $|\sigma(\omega)| = A + \frac{B}{\omega^{2/3}}$
- ightarrow DC resistivity explained by [Hartnoll-Hofman] : $ho \sim T^{2
 u 1}$

$$u = \frac{1}{2}\sqrt{5 + 2(k_{\rm L}/\mu)^2 - 4\sqrt{1 + (k_{\rm L}/\mu)^2}}$$

Bianchi classification

Killing vectors satisfy 3d algebra $[\xi_i, \xi_j] = C_{ij}^k \xi_k$

invariant one-forms

$$d\omega^i = \frac{1}{2}C^k_{ij}\omega^j \wedge \omega^k$$

For type I $(C_{ij}^k=0)$ $\xi_i=\partial_i \qquad \qquad \omega^i=d\mathsf{x}^i$

F type II
$$(C_{23}^1 = -C_{32}^1 = 1)$$

 $\xi_{1,2} = \partial_{1,2}$ $\omega^1 = dx^1 - x^3 dx^2$
 $\xi_3 = \partial_3 + x^2 \partial_1$ $\omega^{2,3} = dx^{2,3}$

Fix type III
$$(C_{13}^1 = -C_{31}^1 = 1)$$

 $\xi_{1,2} = \partial_{1,2}$ $\omega^1 = e^{-x^3} dx^1$
 $\xi_3 = \partial_3 + x^1 \partial_1$ $\omega^{2,3} = dx^{2,3}$

▶ etc. . .

Summary

- ightharpoonup in translationally invariant systems $\sigma_{DC}=\infty$ (if ho
 eq 0)
- \triangleright this ∞ can be resolved:
 - dilute charge carriers
 - break translational invariance
 - homogeneous: Bianchi spaces (can include time)
 - inhomogeneous: lattice (PDEs, not easy)