

Введение в физику ускорителей

Алексей Кононенко

ЦЕРН, Женева, Швейцария ОИЯИ, Дубна, Россия

Программа для украинских учителей в ЦЕРНе, 15.10.2012

Содержание

- Введение, виды ускорителей
- Ускорение заряженных частиц
- Поперечная динамика пучка
- Коллективные эффекты
- Ускорительный комплекс ЦЕРНа
- Применение ускорителей

Электронвольт

Один электронвольт равен энергии, необходимой для переноса элементарного заряда в электростатическом поле в вакууме между точками с разницей потенциалов в 1 В.

1 эВ = 1.602 10⁻¹⁹ Дж

Также электронвольты часто используются для обозначения массы (E=mc²) **1 эВ/с² = 1.783 10⁻³⁶ кг**

Что такое ускорители?

Установки для ускорения заряженных элементарных частиц, ионов. Частицы разгоняются до энергий ~ МэВ, ГэВ, ТэВ, ...

Много разных вариантов, но достаточно простой общий принцип: взаимодействие заряженных частиц с электромагнитными полями

Сила Лоренца

Сила Лоренца — это сила, с которой электромагнитное поле действует на заряженную частицу. Электрическое поле используется для ускорения частицы, а магнитное для изменения траектории её движения.

Линейный ускоритель: линак

Линак – частицы движутся по линейной траектории, ускорение происходит по всей длине ускорителя

$$E_{\mu,M} \approx (2E_1m_2)^{1/2}$$

 $E_1 m_2$
Мишень

Недостатки

- энергия столкновения
- длина ускорителя

Линейный коллайдер

Коллайдер – ускоритель на встречных пучках

Циклические ускорители

В **циклических ускорителях** частицы содержатся долгое время и ускоряются в одной точке траектории – в отличие от линейного случая

Преимущества

- + несколько пролётов
- + можно ускорять в одной точке

Недостатки

- нужно поворачивать частицы
- синхротронное излучение

Циклические ускорители

Циклотрон инжектор Граектория

Огромный дипольный магнит, компактный дизайн, постоянное магнитное поле, низкая энергия, один пролёт

Синхротрон

Изменяющееся магнитное поле, небольшие магниты, большая энергия, ускорение в одной точке

Циклические коллайдеры

В **циклических коллайдерах** циркулируют два пучка частиц в противоположных направлениях. Типы коллайдеров: лептонный, адронный.

Коллайдеры с одним типом частиц, например, p-p требуют две камеры для их поворота по циклической траектории. Пучки находятся в одной камере в районе точки столкновения.

Большой адронный коллайдер: 8 возможных точек столкновения пучков, 4 основных эксперимента, длина 27 км.

Большой адронный коллайдер

Ускорение частиц

Ускоритель должен сообщать заряженным частицам кинетическую энергию. Для этого создается электрическое поле, согласованное с направлением движения частицы.

- ограничение V = ΣV_i
- возможны искры и пробои!

Альтернатива: использовать ускорение электромагнитными волнами

Ускорение волной

Ускорение электромагнитной волной возможно в случае, если направление электрического поля волны согласовано с направлением движения частицы — синхронизм.

Дрейфовая трубка

Дрейфовая трубка – низкоэнергетичный линейный ускоритель. Частица ускоряется переменным электрическим полем между электродами

С увеличением скорости частиц длина дрейфовых трубок должна возрастать, чтобы выполнялось условие синхронизма и происходило эффективное ускорение.

Дрейфовая трубка

Линейные структуры в ЦЕРНе

Резонаторные структуры

Резонансная частота структуры согласована с частотой ВЧ генератора

Резонаторные структуры

Для повышения эффективности ускорения используются более сложные формы резонаторных структур.

БАК, сверхпроводящие, 400МГц Ускорение 5 МВ/м

БЭП, медные резонаторы, 352МГц

Резонаторные структуры

Чем выше рабочая частота – тем меньше размер ускорительной структуры. Однако, необходима более высокая точность её производства и более дорогостоящие СВЧ генераторы.

Медный резонатор для компактного линейного коллайдера, 12 ГГц, 100 MB/м

Ускорение и компенсация

Необходимо сообщить энергию частицам, чтобы их ускорить или компенсировать потери при обращении в кольце циклического ускорителя. «Идеальная» частица должна прибывать в структуру в одной и той же фазе волны круг за кругом.

Принцип автофазировки

Равновесная фаза должна располагаться на спадающем склоне синусоиды ВЧ. Таким образом, обеспечивается стабильность частиц в продольном направлении.

Идеальная частица прилетает в момент времени t₀ → V = V₀ → OK Частица прилетает позже: t₂ → V₂ < V₀ Частица прилетает раньше: t₁ → V₁ > V₀

Генерация протонов для БАК

Для генерации протонов в БАК используется дуоплазматрон. В камеру инжектируется водород, который ионизируется электронами.

Пучки частиц

Частицы группируются электромагнитными полями в сгустки. Наборы сгустков образуют пучки.

Большой адронный коллайдер

- h = 35640
- f_{вч} = 400 МГц
- $V_{RF} = 16 \text{ MB}$

2808 сгустков в пучке

Высокочастотный квадруполь: фокусировка, ускорение и создание сгустков частиц.

Динамика пучка

Для того, чтобы описать движение частиц в циклическом ускорителе, каждая частица характеризируется следующими шестью переменными:

- азимутальная позиция в кольце: s
- импульс: р
- горизонтальная позиция: x
- горизонтальный угол: х'
- вертикальная позиция: у
- вертикальный угол: у'

Динамика пучка

В ускорителе, разработанном для работы на энергии **Е_{ном}**, все частицы вида (s, **Е_{ном}**, 0, 0, 0, 0) будут циркулировать в центре вакуумной камеры по кругу. Однако, это лишь «идеальные» частицы.

Проблемы возникают, когда:

– используются дипольные магниты для поворота частиц – $\mathbf{E} \neq \mathbf{E}_{HOM}$ или (p-p₀) /p = $\Delta p/p_{nom} \neq 0$ – x, x', y, y' $\neq 0$

Дипольные магниты

Частицы с одинаковой магнитной жесткостью будут двигаться по одинаковым траекториям в поле В. Выражение также верно для релятивистского случая, если импульс **mv** заменить на релятивистский импульс **p**.

Дипольные магниты

«Теплый» магнит

Сверхпроводящий магнит

Магнитное поле диполя

Идеальный коллайдер

Если пренебречь синхротронными излучением в диполях, гравитацией, то идеальные частицы будут циркулировать на оси циклического коллайдера вечно.

К сожалению:

- гравитация Δy = 20 mm за 64 мс
- выравнивание установки
- движение грунта
- отклонения ЭМ полей от расчетных
- ошибки в энергии частиц, положении

Необходима фокусировка частиц!

Фокусировка квадруполями

 $F_x = -gx$ $F_y = gy$

Сила увеличивается линейно со смещением.

К сожалению, такой квадруполь фокусирует частицы в горизонтальной плоскости и рассеивает в вертикальной плоскости

Квадруполи

«Теплый» магнит

Сверхпроводящий магнит

Знакопеременная фокусировка

Основная идея: отказаться от одновременной фокусировки в двух плоскостях. Частицы, у которых **х**, **х'**, **у**, **у'** ≠ 0 будут осциллировать вокруг «идеальной» частицы внутри вакуумной камеры.

QF — фокусирующий квадруполь, **QD** — дефокусирующий. Схема верна только в одной плоскости: горизонтальной или вертикальной.

Почему в итоге фокусировка?

Точное доказательство также достаточно простое!

Концепция ячейки FODO

F - фокусировка, О - дрейф, D - расфокусировка, О - дрейф

Период полного колебания: 4 ячейки \Rightarrow μ = 90°/ ячейку

Циклические ускорители

Циклический ускоритель представляет собой периодическую структуру, состоящую из ячеек, кроме прямых участков. Ячейка: фокусирующий квадруполь **QF**, дипольный магнит **D**, расфокусирующий квадруполь **QD**, дипольный магнит **D**.

Изменяя поле в квадруполях, можно варьировать набег фазы на ячейку µ. Идеальная частица будет следовать по траектории, которая замкнётся на себя же после полного оборота в кольце.

Реальные частицы будут выполнять колебания вокруг замкнутой орбиты. Количество колебаний для полного оборота в кольце называется настроечным **Q** установки (**Qx** и **Qy**).

Бета-функция $\beta(s)$

Бета-функция - это огибающая всех траекторий частиц, циркулирующих в ускорителе.

Минимум β-функции находится в QD, а максимум в QF, что обеспечивает итоговый эффект фокусировки. Вследствие повторения ячеек эта функция является периодической.

Осцилляции частиц называются бетатронными колебаниями.

Зачем нужна эта функция?

β-функция – фундаментальный параметр, потому что она напрямую связана с размером пучка. Пучек имеет форму близкую к гауссовой.

$$\sigma_{x,y}(s) = (\epsilon \beta_{x,y}(s))^{1/2}$$

е - эмиттанс, размер фазового
 пространства пучка, т.е. критерий
 отклонения частиц от идеальных

При столкновении пучков в БАК $\sigma = 17 \mu m$, $\beta = 0.55 m$

Синхротронное излучение

Заряженные частицы, движущиеся с релятивистскими скоростями по искривленным магнитным полем траекториям, испускают синхротронное излучение.

$$\Delta \mathbf{E} \sim \gamma^4 / \mathbf{r}$$

$$\gamma = E/E_0 = m/m_0$$
, $m_0 - масса покоя$

Протон: m₀ = 0.938 ГэВ/с²

Электрон: m₀ = 0.511 МэВ/с²

$$(m_{o-p}/m_{o-e})^4 = (1836)^4 \cong 10^{13}$$

Коллайдер	B [T]	Е/пучок [ГэВ]	γ	Δ <mark>Е</mark> [ГэВ]
БЭП (е⁺ е⁻)	0.12	100	196000	2.92
БАК (р-р)	8.3	7000	7500	0.00001

Вывод: коллайдеры на высоких энергиях для лептонов должны быть линейными. Для адронов же синхротронное излучение сравнительно невелико.

Светимость коллайдера

Светимость – интенсивность столкновения частиц встречных пучков

 $dN/dt = L \sigma_{[cm^{-2}c^{-1}][cm^{2}]}$

$$L = N_1 N_2 f k / (4 \pi \sigma_x \sigma_y) [cm^{-2}c^{-1}]$$

N(t) – количество столкновений

- о вероятность столкновения
- N_{1,2} количество частиц в сгустке (1.15 10¹¹)
- f частота обращения (11.245 кГц)
- k количество сгустков в кольце (2808)
- σ_{х,у} размеры сгустка (17 µм)

 $\sigma \le 10^{-39} \text{ cm}^2$ L = 10³⁴ cm⁻² c⁻¹

Поле релятивистского пучка

M. Ferrario – CAS Baden 2005

Шунтовой импеданс

Если проводник неидеальный или меняются геометрические параметры, то возникает взаимодействие между пучком и стенками

- U напряжение на траектории пучка
- ток пучка

Поля, наведённые пучком

Электромагнитные поля, индуцированные пролётом сгустка в компонентах ускорителя, могут влиять на сам сгусток или на последующие сгустки, вносить нестабильности и нагревать стенки.

A. Candel, SLAC

Экран для пучка в БАК

Без этого дополнительного слоя меди номинальное количество протонов в сгустке, предусматриваемое для БАК, не могло бы циркулировать в установке!

Применение ускорителей

Томограф

Женевская университетская больница

Терапия легкими ионами

Институт Поля Шеррера, Швейцария

- телевизор
- полимеризация пластмассы
- бактериальная стерилизация без нагрева...

Ускорительный комплекс ЦЕРНа

Кононенко А., Введение в физику ускорителей

Спасибо за внимание!

Thanks also to Daniel Brandt for the pictures and content taken from his excellent "Introduction to Accelerators" presentation