Accelerators and Particles

Keti Kaadze

What's the Point?

Standard model describes fundamental particles and interactions

- Fermions
 - -Leptons
 - —Quarks
- Force carriers
 - Electromagnetic interaction γ
 - -Weak interaction W[±], Z⁰ bosons
 - -Strong interaction gluon

Beginning of the era

- View of the particle world as of early XXth Century
- Particles found in atoms:
 - Electron
 - Nucleons:
 - Proton (nucleus of hydrogen H)
 - Neutron (e.g. nucleus of helium He α-particle has two protons and two neutrons)
- Related particle mediating electromagnetic interactions between electrons and protons:
 - Photon (light!)

Particle	Electric charge (x 1.6 10 ⁻¹⁹ C)	M ass (GeV=x 1.86 10 ⁻²⁷ kg)
e	-1	0.0005
p	+1	0.938
n	0	0.940
γ	0	0

Beyond Atomic Physics

- There are more particles around us at all times we just needed to learn how to look
- Cloud Chamber: 1911, C.T.R. Wilson (Nobel Prize)
 - Vapors condensate into tiny droplets around ionized atoms along charged particle trajectories
 - You can buy or build one

Photo of α-particles emitted by radioactive source and seen in cloud chamber

Cosmic rays

Cosmic Rays

- Occasionally energetic particle enters our atmosphere from outer space and triggers a chain of particle interactions
- New particles are created and then most of them decay
- Source of many important particle discoveries in 1930s-40s

Discovery of positrons (antimatter)

- **Discovery of positron** Carl Anderson 1932
 - positively charged electrons detected in cosmic rays passing through a cloud chamber immersed in a magnetic field

Photon conversions $\gamma \rightarrow e^+ e^- in a bubble$ chamber

- discovery of antimatter
- positrons predicted by Dirac in 1928 from relativistic theory of electrons:

6

Non-relativistic kinetic energy:

$$E = \frac{m \text{ v}^2}{2} = \frac{p^2}{2m}$$

Relativistic kinetic energy (Einstein):

$$E^2 = m^2 c^4 + p^2 c^2$$

$$E^2 = m^2 c^4 + p^2 c^2$$
 $E = \pm \sqrt{m^2 c^4 + p^2 c^2}$

"negative" solution is related to the existence of antimatter

Discovery of muon (µ) (particle generations)

- Discovery of muon Neddermeyer, Anderson 1937
 - penetrating cosmic ray tracks with unit charge but mass in between electron and proton
 - muons were proven not to have any nuclear interactions and to be just heavier versions of electrons
 - μ decays to electron and two invisible neutrinos via weak interactions (β decay): μ⁻ → ν_μ e⁻ v̄_e
 - first encounter of the generation problem

Particle	Electric charge (x 1.6 10 ⁻¹⁹ C)	Mass (GeV=x 1.86 10 ⁻²⁷ kg)
e	-1	0.0005
μ	-1	0.106
р	+1	0.938
n	0	0.940
γ	0	0

73 years later we still don't have a good answer

Particle accelerators

- Drawbacks of Cosmic Rays:
 - Interesting things happen very very rarely
 - Very difficult to catch them in particle detectors
 - Rate drops quickly with particle energy
- Particle accelerators:
 - Make things happen when and where we want
 - Can achieve high rates at high energies
 - Accelerate ordinary stable particles (e, p) from rest to large kinetic energies and smash them into the other matter
- Kinetic energy of light particles can be turned into mass of heavy particles!

$$E = m c^2$$

The Cyclotron

- Ernest Orlando Lawrence
 - 1929, UC Berkley

- Energy of particle is limited by the size of magnets
- Cyclotrons were used to discover/study many isotopes during 1930-1940

The synchrotron

 Synchrotron maintains fixed orbital radius while adjusting magnetic field to accelerate

a beam

 First electron synchrotron was built in Berkley in 1945. Discovered antiproton and antineutron in ~1955

- J/ Ψ and charm quark in 1976
- Muon neutrino in 1988

Why Colliders?

$$\left|p_{\it initial}\right| = \left|p_{\it final}\right| > 0$$

$$|p_{initial}| = |p_{final}| = 0$$

$$m^2 = E^2 - p^2$$

Low momentum means large mass

Colliders I

- PETRA at DESY (Hamburg, Germany) 1978-1986
 - Electron-positron accelerator, beam energy 20 GeV
 - Discovered gluon in three jet events

Quark-quark-gluon

Gluons holding quarks together to form a proton (diagram from Scientific American)

Colliders II

- SppS at CERN 1981-1984
 - Proton-antiproton collider
 - Circumference 6.9km
 - Discovered W[±] and Z⁰ bosons

W->ev candidate

 β -decay: n → p + e + ν

Z->ee candidate

Colliders III

- Tevatron at Fermilab 1992-Current
 - Proton-antiproton accelerator at 900 GeV/beam (6.2 km)

Discovery of Top quark

Theorist's View

- The heaviest fundamental particle
- Discovered in 1995

Picture at the start of LHC

- Standard model of particle physics is in very good agreement with the experimental observations
 - Only missing piece was Higgs boson that explains the origin of mass of other elementary particles via Higgs mechanism (1964)
- There are more puzzles in Nature
 - Why gravity is so weak
 - What is dark matter made of
 - Etc.

Large Hadron Collider

- Answers to these (and maybe to some new questions) are expected from Large Hadron Collider at CERN
 - Proton-proton accelerator at 3.5 TeV/per beam
 - 7 TeV/per beam by design
 - Highest energy ever achieved in accelerator physics

Higgs searches

- SM Higgs can decay to different particles: ZZ, γγ, ττ, WW
- Compare data with the model
 - So far new particle decaying to ZZ and γγ is observed
 - More data is needed to confirm other decays

Backup

Large Electron Positron Collider

- LEP at CERN 1989-2000
 - electron-positron accelerator, 27 km.
 - Precisely measured Z boson properties: decays, mass, width
 - Constraint on number of neutrinos:
 - Presence of additional light neutrino result in increase of Z width and decrease of cross section

Only three light neutrinos exist, that implies only three generations of

quarks and leptons

